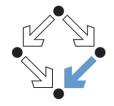


PFAU 9.0:

"Fluid-Structure Simulations with OpenFOAM for Aircraft Designs"

9th OpenFOAM User Meeting 3.11.2014, JKU Linz

DI Thomas Ponweiser RISC Software GmbH Softwarepark 35, 4232 Hagenberg, Austria


- Introduction
 - RISC Software GmbH / Unit ISA
- Project description
 - Context: EU Project PRACE
 - Objectives and Scientific Case
- Accomplished Work
 - Geometric Modelling
 - FSI Solver implementation (based on OF 2.2)
- Performance and Scalability Analysis Results
 - OF's Pstream lib:
 - Identifying a scalability bottleneck
 - Implementing a simple workaround
- Conclusion

About RISC Software GmbH

<u>EmbH</u>	RISC Institute	RISC Software GmbH	Ownership Structure	Business Units
RISC Software GmbH	 Basic Research in Symbolic Computation Chair: Prof. Peter Paule Founder(1987): Prof. Bruno Buchberger 60 Members (including PhD Students) 	 Software Development Applied Research (Algorithmic Mathematics) Transfer of Technology approx. 50 Employees 	 80% Johannes Kepler University Linz 20% State Upper Austria (UAR GmbH) WINNERSITY LINZ I JKU 	LI ISA ACT
CEPLER JKU		Foundation SC Software GmbH f. Bruno Buchberger) 1992 1995 RISCSW specializes in software for logistics and		Headcount 52 approx. 4,5 Mio. EUR 2013
JOHANNES KEPLER UNIVERSITY LINZ	Hagenberg under the management of RISC AUSEILDUNG	production planning	© 2014	Record State UPPER AUSTRIA

INDUSTRIAL SOFTWRE APPLICATIONS

MEDICAL INFORMATICS

LOGISTICS

INFORMATICS

A CO TI

ADVANCED COMPUTING TECHNOLOGIES

Computational Engineering (CE)

- Design Analysis and Optimization
- Virtual product development
- Engineering workflow management

Manufacturing Processes and Control Systems (MP)

- Simulation of machining processes
- Geometric modeling and visualization for CAM

Project Context:

PRACE – The European HPC Infrastructure

- PRACE is ...
 - a Pan-European Research Infrastructure (RI) for High Performance Computing (HPC)
 - an international non-profit association with seat in Brussels (PRACE AISBL)
- PRACE mission:
 - Enhancing European HPC competitiveness
 - Strengthen the European HPC user community
 - Improving HPC systems (energy efficiency / environmental footprint)

- PRACE Funding
 - 68+ MEUR from EC FP7
 - ~ ≈ 50 MEUR from PRACE
 Members
- Currently 25 Members
 - Austria: JKU

- Education and training:
 - PRACE Advanced Training Centers (PATC)
 - PRACE Seasonal Schools
 - Partner Trainings
 - Summer of HPC
 - Best practice guides / Whitepapers (available online)

Access to HPC Systems

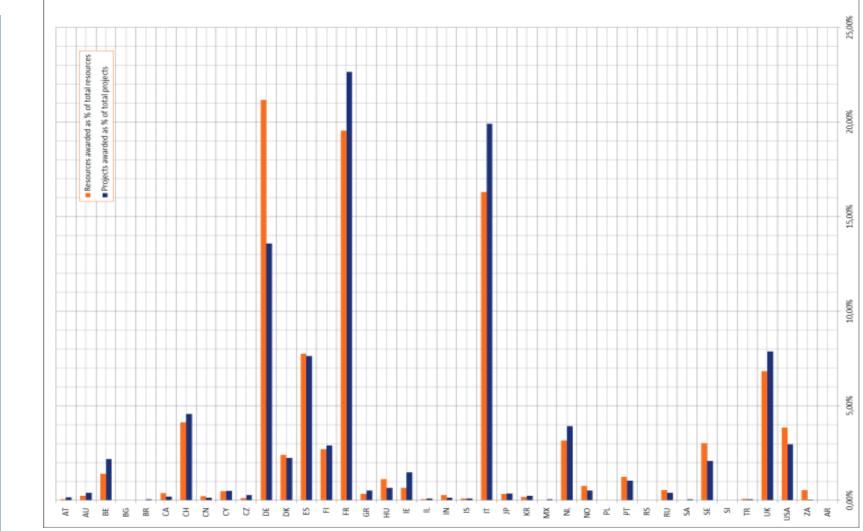
- For academia (world-wide) and (European) industry
- Proposals for projects can be submitted periodically
- Selection: Peer-review process
- Condition for free access: All results must be published

- Tier-0
 - European Centers with Multi-Petaflop performance
 - Currently 6 Systems:
 - CURIE (FR), FERMI (IT), Hornet (DE),
 - JUQUEEN (DE), MareNostrum (ES), SuperMUC (DE)
- Tier-1
 - National Centers (> 20 Systems)
- Tier-2
 - Regional / University Centers

- Tier-0:
 - Project access
 - For large-scale computationally intensive projects
 - Every 6 months
 - 1 year duration; 500.000 100.000.000 CPU hours
 - Preparatory access
 - For preparing proposals for regular project access
 - Type A: Code scalability testing
 - Type B: Code optimization by applicant
 - Type C: Code optimization with PRACE expert support
 - Every 3 months
 - 6 months duration; 50.000 250.000 CPU hours

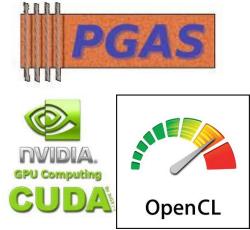
UNIVERSITY LINZ | JK

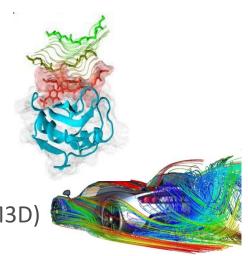
- Tier-1:
 - DECI (Distributed European Computing Initiative)
 - 12 national centers provide around 100 million CPU-hours per call
 - Calls every 6 months
 - 1 year duration; 1.000.000 10.000.000 CPU-hours
 - Multi-year access
- More information online:


-<u>http://www.prace-ri.eu/</u>

UNIVERSITY LINZ | JKU

UNIVERSITY LINZ | JKU


PRACE Resources awarded by Country


Source: http://www.prace-ri.eu/statistics/

- New Programming Models, Libraries and Tools
 - Reviews of tool suites
 - Creation of synthetic benchmarks
 - Programming paradigms (MPI, OpenMP, PGAS, ...)
 - Accelerator Languages (CUDA, RapidMind, openCL, ...)
 - Petascale libraries
 - Porting key kernels to wide range of platforms

- Petascaling Key Community applications
 - Materail & Life Sciences (GPAW, GROMACS, Quantum_Espresso, CP2K)
 - Computational Chemistry (DL_POLY, DALTON)
 - Astrophysics (EUTERPE)
 - Engineering/CFD (OpenFOAM, Code_Saturne)
 - Meteorology/Climatology (EC Earth 3, SPECFEM3D)

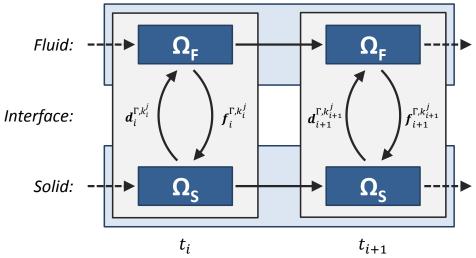
Fluid-Structure Simulations with OpenFOAM for Aircraft Designs

- PRACE "Socio-Economic Challenges"
 - Projects proposed by PRACE partners having *significant impact / high benefit* for society and economy
- Aircraft design is such a challenging task goals:
 - Reducing weight
 - Improving energy-efficiency / environmental footprint
 - Reducing noise
 - Increasing safety

- State of the art
 - Highly specialized simulation codes for CFD/CSM
 - CFD calculations:
 - Rigid aircraft geometry
 - Simplified aerodynamic models (potential flow, etc.) are common
 - CSM calculations
 - Predefined aerodynamic forces
- Problem
 - Iterative, cost-intensive design process

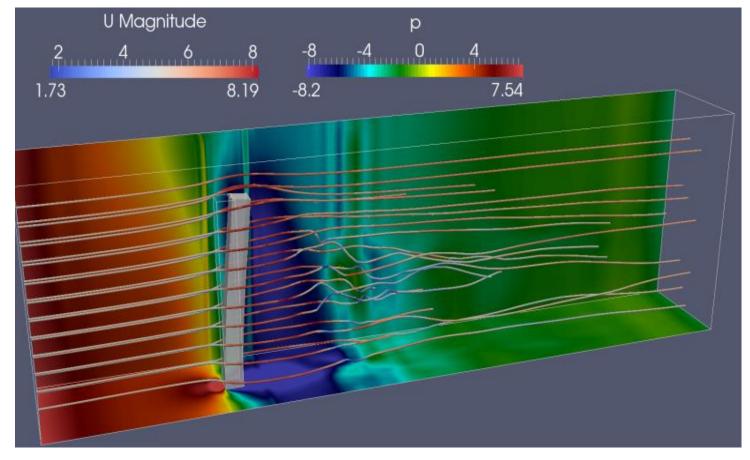
- Implementing an FSI Solver
 - Strongly coupled
 - Independent Meshes for Fluid/Solid domain
 - Optional:

Coupling different simulation codes for CFD and CSM


- Feasibility demonstration
 - Transient high-fidelity simulations
 of Aircrafts in high-lift configurations
 - Targeted scale:CFD Mesh with > 50 Mio. Cells

- Optional goal of using different simulation codes for CSM/CFD has been dropped.
- Implemented FSI Solver is entirely based on OpenFOAM 2.2
 - Independent meshes for Fluid and Solid domain realized with "mesh regions".
 - Coupling with "arbitrary mesh interface" (AMI).
 - Inspired by:
 - icoFSIElasticNonLinULSolidFoam (OpenFOAM Extend Project)
 - chtMultiRegionFoam (OF 2.2.1)

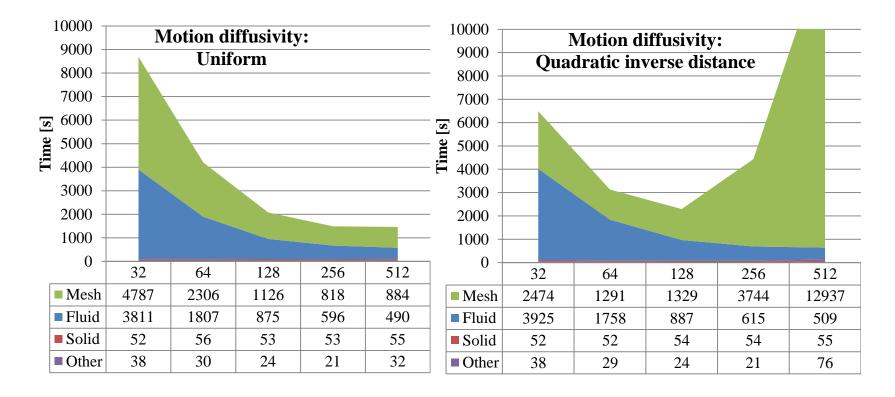
- For each time step:
 - Set interface displacement for fluid mesh (Aitken relaxation is used)
 - 2. Compute mesh deformation (mesh motion solver)
 - 3. Solve Fluid (PISO)
 - 4. Set interface pressure for solid mesh
 - Solve Solid (Linear elastic material model)



- Problems with Mesh Import
 - Available (sequential) Tools for converting CGNS to OF had serious problems with large meshes (> 1 Mio. Cells)
 - Self-written importer worked,
 but OF did not accept the generated mesh
 (OF has very strict quality criteria)

UNIVERSITY LINZ | JKU

 For testing and scalability analyses, a very simplified geometry has been used:



JOHANNES KEPLER | JKU

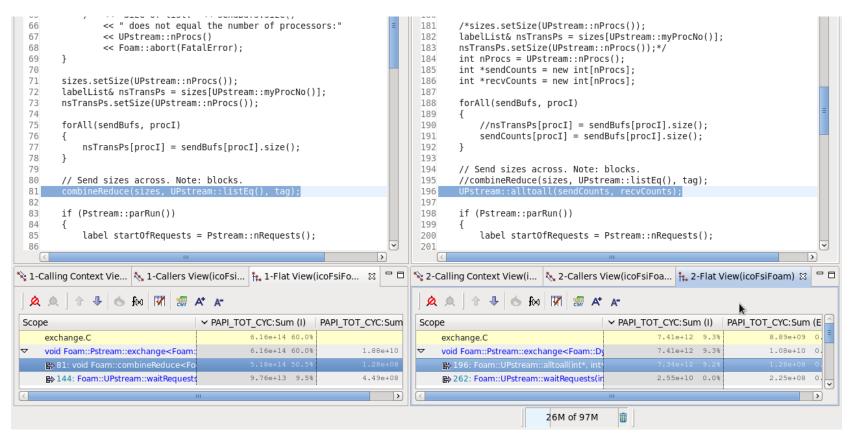
Performance Analyses and Results

- Solution time is dominated by motion solver
 - Scalability strongly depends on setting for "Motion diffusivity":

JOHANNES KEPLER UNIVERSITY LINZ

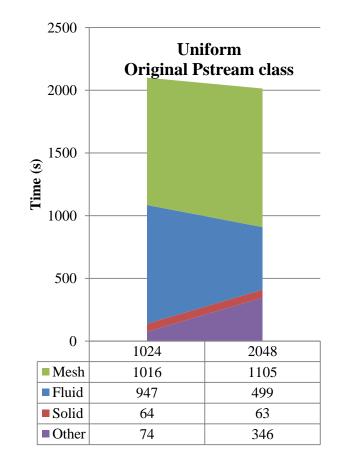
- What is the difference?
 - The difference is how the coefficients in the Laplace equation for mesh motion are determined.
 - Uniform:
 - Constant coefficient
 - Quadratic inverse distance:
 - Each cell's coefficient depends on the distance to the coupling interface.
 - Recalculated in every inner iteration of the strongcoupling scheme.

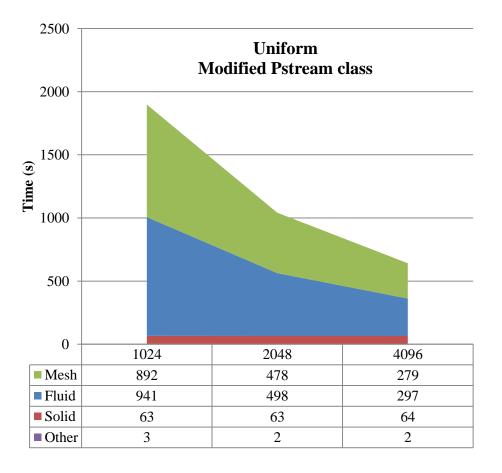
- Distance to wall (coupling interface) is calculated using a "Moving-front algorithm" (MeshWave).
- In MeshWave, collective data exchange takes place in every iteration.
- In OpenFOAM, the first step for all collective data exchanges is transferring message sizes.
 - The complete matrix of message sizes is replicated to all processes (although only one row of this matrix is needed)
 - Implemented using MPI-Point-to-Point communications (strange hand-written tree-topology behind the scenes)


- Summary:
 - The Bottleneck is transfer of message sizes (not transfer of actual messages).
 - Contributes to ≈60% (!) of the total runtime for large core-counts
 - MPI-Point-to-Point communications are used, where MPI Collectives (MPI_Alltoall) would just be natural.
 - The Bottleneck affects OpenFOAM's basic functionality (Pstream::exchange(), used practically everywhere)

UNIVERSITY LINZ | JKU

• Using MPI_Alltoall for message size transfer


Original code:



Modified code:

Effect for Uniform Motion diffusivity:

RISC Software GmbH

RISC Software GmbH – Johannes Kepler University Linz

- Developing with OpenFOAM
 - Tutorials and examples are very helpful
 - Overall good software design (extensibility, flexibility)
 - Object-Orientedness has probably been pushed too far in some places
- Profiling Tools and OpenFOAM
 - Problems TAU or SCALASCA
 - Assumed reason: Code instrumentation parsers cannot cope with OpenFOAM's unconventional programming style. (using source files containing raw code blocks and #include statements instead of proper function calls)
 - HPCToolkit woks nicely
 - Call paths in OF are very deep / highly complex.
 - When compiler inlining is not explicitly disabled, understanding the generated profiles is nearly impossible.

- OpenFOAM and mesh import:
 - For real industrial applications
 - Better import tools are needed and
 - OpenFOAM's high mesh quality requirements may be a further obstacle.
- Scalability of OpenFOAM:
 - A severe scalability bottleneck has been identified
 - Using MPI_Alltoall for message size exchange
 - Significantly improves scalability (up to 4k processes)
 - Reduces Code complexity (no strange tree-topology stuff)

UNIVERSITY LINZ | JKU

- Official PRACE Site:
 - <u>http://www.prace-ri.eu</u>
- Whitepaper
 "Fluid Structure Interactions using OpenFOAM for Aircraft Designs":
 - <u>http://www.prace-ri.eu/IMG/pdf/wp172.pdf</u>
- Reported scalability issue + patch for workaround:
 - <u>http://www.openfoam.org/mantisbt/view.php?id=1330</u>
- HPCToolkit:
 - <u>http://hpctoolkit.org/</u>

Castor, 4228m Pollux, 4092m

between Monte-Rosa-Massiv and Matterhorn Wallis, Schweiz

www.risc-software.at