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Why Nano?
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Condensation Particle Counters (CPCs)

©AVL List GmbH

Why Nano?
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… with fast dynamics, coupling of heat and mass 
transfer, droplets are polydisperse, and a size 
change typically 3 orders of magnitude … 

• Where do these phenomena take place?

• What is the final droplet size distribution?

• How can we troubleshoot CPCs?

Droplets nucleate and grow in a CPC on 
nanoparticles

Why Nano?
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• What is the challenge?

Droplets nucleate and grow in a CPC on 
nanoparticles

Why Nano?

Mamakos et al., Aerosol 

Science and Technology, 

47:11-21 (2013)
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Multiphase Flow inside the CPC

• continuous phase (e.g., n-Butanol vapor in air)

– modeled with the cpcFoamCompressible solver 
implemented in OpenFOAM

– all effects relevant for CPCs considered 
(thermodiffusion, heat of evaporation / 
condensation, etc.)

• disperse phase

– qmomCloud library

– solves the population balance equation for the 
droplets using a QMOM approach (univariate in 
droplet diameter)

(a) Evaporator-Condenser 
system in a CPC

(b) saturation ratio profile –
solution for the continuous phase

The Models
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Population Balance Equation (PBE)

PBE very difficult to solve directly for n(x,ξ,t)

 solve the PBE for some lower order moments of the NDF
 transformation to a set of moment equations – method of moments (MOM)
 the moment equation for the k-th moment is obtained by:

 multiply PBE with 𝜉𝑘

 integrate over phase space

k-th moment of the NDF:

Disperse phase: characterized by the number density function (NDF) 

CPC: property ξ is the droplet size → NDF = droplet size distribution

The Models

growth nucleation
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Moment Transport Equations

 Moments approximate the NDF

 Moments have a physical meaning:
 m0……. number concentration [m-3]

 m1……. total droplet size p. vol. [m-2]

 L32=m3/m2… Sauter mean diameter [m]

 If ℛ term unclosed, reconstruct NDF 
with QMOM (set of N nodes and N
weights)

 ℛ terms determined by physical 
models

The Models
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Moment Transport Equations
(Example)

Solution for the disperse phase approximated by time evolution of first 2N 
moments (m0 , m1,……., m2N-1)

Unclosed for k = 0 

and k = 1

𝑘 = 0,… . . , 2𝑁 − 1

The Models
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Quadrature Method of Moments

Approach
 moments are approximated by 

N weights wα and N nodes ξα

 weights and nodes are calculated with the first 2N moments (e.g., PD algorithm)

Result
 the first 2N moments are reproduced exactly

 unknown moments in the source terms of the moment transport equations can be 
computed to close the system of equations!!

The Models
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Growth Models

…inserted into the moment
evolution equations yields…

The Models
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Growth Models

The Models

1) Simple Continuum-Regime Closure (thermal equilibrium, dilute vapor, large droplets)
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2) Classical Closure (Abramzon & Sirignano, 1989; thermal equilibrium, large droplets)
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Growth Models

The Models

3) Free-Molecule-to-Continuum-Regime Closure 
(Fuchs and Sutugin, 1970; Ahn and Liu, 1990)
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Expensive: iterations are required to determine Td.
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Nucleation Model

The Models

1) Standard Heterogeneous Nucleation Model
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The Software

So, let‘s start from scratch:
• cpcFoamCompressible as new solver

• qmomCloud for modeling droplets

https://github.com/OpenQBMM 

Unfortunately, there is no publicly-available (x)MOM 
implementation in OpenFOAM!



The Software

Extra math, diffusion 

coefficients, liquid properties…

Library of QMOM routines

Markdown-based 

documentation

solvers



Demo Time
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