
README for swak4Foam

Bernhard F.W. Gschaider

October 18, 2012

Contents

1 Description 1

2 About this document 1
2.1 Scope . 1
2.2 Technical . 1

3 Contributors etc 2
3.1 Original Author . 2
3.2 Current Maintainer . 2
3.3 Contributors . 2
3.4 Documentation . 2

4 Installation/Compilation 2
4.1 Requirements . 2
4.2 Building . 3

4.2.1 Additional configuration 3
4.3 Global installation . 4
4.4 Packaging . 4

4.4.1 Debian . 4

5 Contents 5
5.1 Libraries . 5

5.1.1 swak4FoamParsers . 5
5.1.2 simpleFunctionObjects 5
5.1.3 groovyBC . 5
5.1.4 swakFunctionObjects 5
5.1.5 simpleSwakFunctionObjects 6
5.1.6 swakSourceFields . 6

1

5.1.7 swakTopoSources . 6
5.1.8 swakFiniteArea . 7
5.1.9 groovyStandardBCs 7
5.1.10 pythonIntegration 7
5.1.11 fluFunctionObjectDriver 7
5.1.12 functionPlugins . 7

5.2 Utilities . 8
5.2.1 funkySetFields . 8
5.2.2 funkySetAreaFields 8
5.2.3 funkySetBoundaryField 8
5.2.4 replayTransientBC 8
5.2.5 funkyDoCalc . 9

5.3 Examples . 9
5.3.1 groovyBC . 9
5.3.2 FunkySetFields . 10
5.3.3 FunkySetBoundaryFields 10
5.3.4 InterFoamWithSources 11
5.3.5 InterFoamWithFixed 11
5.3.6 FiniteArea . 11
5.3.7 other . 12
5.3.8 PythonIntegration . 13
5.3.9 solvePDE . 13
5.3.10 BasicSourceSubclasses 14
5.3.11 Lagrangian . 14
5.3.12 tests . 15

5.4 maintainanceScripts . 15

6 Bug reporting and Development 15
6.1 Bug reports . 15

6.1.1 Things to do before reporting bug 15
6.2 Development . 15

6.2.1 Suggest reading . 16
6.2.2 Special branches . 17
6.2.3 Distributed bug-tracking 17

7 Copyright 17

8 Known bugs 17
8.1 Moving meshes and sampledSurfaces 18
8.2 Missing support for interpolation and point-Fields 18

2

8.3 Caching of loaded fields not working 18
8.4 Possible enhancements of the code 18

8.4.1 Pointers in the driver code 18
8.5 Possible memory loss . 18
8.6 No point-vector construction for Subsets 18

9 History 19
9.1 2010-09-13 - version number : 0.1 19
9.2 2010-12-18 - version number : 0.1.1 19

9.2.1 Parser for sampledSurfaces 19
9.2.2 Multiline variables 19
9.2.3 Two maintainance-scripts were added 19
9.2.4 Parsers using ‘external variables’ are now run-time se-

lectable . 19
9.3 2011-01-30 - version number : 0.1.2 19

9.3.1 Support for Finite Area-stuff 19
9.3.2 Bugfix for compiling in single precision 20
9.3.3 New function nearDist 20

9.4 2011-04-20 - version number : 0.1.3 20
9.4.1 New utility funkySetAreaField 20
9.4.2 Refactoring of groovyBC and groovified boundary con-

ditions . 20
9.4.3 Easier deployment . 20
9.4.4 Force equations . 20
9.4.5 New utility funkyDoCalc 21
9.4.6 Debian packaging . 21
9.4.7 Lookup-tables . 21
9.4.8 Stored variables . 21
9.4.9 Sampled sets . 21

9.5 2011-07-26 - version number : 0.1.4 21
9.5.1 New features: . 21
9.5.2 Bug-fixes . 22
9.5.3 Packaging . 22

9.6 2011-10-03 - version number : 0.1.5 22
9.6.1 New features . 22
9.6.2 Administrative and packaging 23
9.6.3 Bugfixes . 24

9.7 2012-01-04 - version number : 0.1.6 24
9.7.1 Cases changed . 24
9.7.2 Infrastructure . 24

3

9.7.3 Technical . 24
9.7.4 New features . 25
9.7.5 Bug fixes . 27

9.8 2012-04-13 - version number : 0.2.0 Friday the 13th 28
9.8.1 New features . 28
9.8.2 Infrastructure . 30
9.8.3 Packaging . 31
9.8.4 Changes in the behavior 31
9.8.5 Bug fixes . 31

9.9 2012-10-18 - version number : 0.2.1 33
9.9.1 Requirements . 33
9.9.2 Bug fixes . 33
9.9.3 Enhancements . 37
9.9.4 New features . 38
9.9.5 Infrastructure . 41

1 Description

A collection of libraries and tools that let the user handle OpenFOAM-data
based on expressions

2 About this document

2.1 Scope

This file gives an overview of swak4Foam and a history of the features. It is
not a canonical documentation.

2.2 Technical

This file is written in the mighty org-mode (see http://orgmode.org/) a
markup/outline-mode for (X)Emacs. Using this mode it can be easily (using
3 keystrokes . . . it’s Emacs) to PDF or HTML to make it more readable
(and add a table of contents).

Please don’t try to “beautify” it with any other text editor as this will
surly mess up the markup (and keeping the file org-compatible outside of the
org-mode is a pain in the neck.

4

http://orgmode.org/

3 Contributors etc

3.1 Original Author

Bernhard Gschaider (bgschaid@ice-sf.at)

3.2 Current Maintainer

Bernhard Gschaider (bgschaid@ice-sf.at)

3.3 Contributors

In alphabetical order of the surname

Peter Keller sprinklerInlet-case

Andreas Otto fixed the circulatingSplash-case

Alexey Petrov pythonFlu-integration

Bruno Santos • Compilation with Intel compiler and Mingw

• Rewrite of mybison and myflex to allow parallel compilation with
WM_COMPPROCS

Martin Becker The potentialPitzDaily-case (demonstrating a problem
with groovyBC)

If anyone is forgotten: let me know
Contributors to simpleFunctionObjects are listed separately in the

README of that library

3.4 Documentation

See: http://openfoamwiki.net/index.php/contrib/swak4Foam

4 Installation/Compilation

4.1 Requirements

• Version 1.7 or 1.6-ext of OpenFOAM (1.6 should work, too)

– The finiteArea-stuff will only work with version 1.6-ext

• the compiler generators bison and flex

5

http://openfoamwiki.net/index.php/contrib/swak4Foam

bison swak4Foam is known to work with bison version 2.4 and higher.
Version 2.3 compiles but the plugin-functionality does not work
correctly

flex since the introduction of the plugin functions at least a flex version
of 2.5.33 is required (2.5.35 is the lowest confirmed version)

Both of these are mainstream packages (they are for instance needed to
compile gcc) and should exist on every Linux distribution. Use the package
manager of your distribution to install them and only if the compilation
process of swak4Foam complains about too low versions try to install them
from other sources.

swak4Foam tries to keep the requirements on these as low as possible
and sometimes lower versions than the ones reported may work. If they do
please report so.

The version of bison can be checked with

bison -V

The version of flex with

flex -V

4.2 Building

wmake all

at the base directory should build all the libraries and tools.
Rerun the command to make sure that there was no problem with the

compilation (this should be quite fast and only report libraries being created
and some administrative stuff)

4.2.1 Additional configuration

Some features (currently only the Python-integration may need third
party software. The paths to these packages can be configured in a file
swakConfiguration (an example file swakConfiguration.example is pro-
vided). If that file is not present these unconfigured features will not be
compiled.

Environment variables that can be set in this file are:

SWAKPYTHONINCLUDE Path to the Python.h file of the used python-
installation

6

SWAKPYTHONLINK Options to link the python-library to the library for
the python-integration

SWAKUSERPLUGINS A list of paths separated by semicolons. These are the
directories of libraries with function-plugins. They are compiled in the
course of the normal swak-compilation. This makes sure that they are
consistent with the swak-release in the case of an update

4.3 Global installation

If the libraries and utilities are considered stable and the should be available
to everyone (without having to recompile them) the script copySwakFilesToSite.sh
in the directory maintainanceScripts can be used to copy them to the
global site-specific directories.

The script removeSwakFilesFromSite.sh in the directory maintainanceScripts

removes all these files from the global directories. The removeSwakFilesFromLocal.sh
does the same for the user directories (this makes sure that no self-compiled
version shadows the global version (which would lead to strange results)

There is a Makefile attached. make globalinstall compiles swak4Foam
and installs it into the global directories

Note: Due to the order in which library direcories are searched for with
-L a global installation might break the compilation. If you don’t know
what this means: don’t attempt a global installation

4.4 Packaging

4.4.1 Debian

The command build dpkg builds a Debian/Ubuntu package for the cur-
rently enabled OpenFOAM-package. Note:

• it is assumed that the currently used OF-version was also installed by
the package manager

• the dev package is built but poorly maintained

Changes in the packaging should be done in the branch debianPackaging

of the Mercurial-repository and later be merged to the default-branch.
Packaging for OpenFOAM 2.x should be done in the branch debianPackaging_2.x

Note: Due to the problem described with the global installation it might
be necessary to deinstall a previously installed package to successfully build
a new package

7

5 Contents

5.1 Libraries

Collection of Libraries

5.1.1 swak4FoamParsers

The basis of swak4Foam: the expression parsers with the logic to access the
OpenFOAM data-structures.

None of the other software pieces compile without it

5.1.2 simpleFunctionObjects

A collection of function objects that was previously separately available at
http://openfoamwiki.net/index.php/Contrib_simpleFunctionObjects.

Provides consistent output of values (on patches and fields) and more.

5.1.3 groovyBC

Implements the infamous groovyBC. A boundary condition that allows arbi-
trary expressions in the field-file

5.1.4 swakFunctionObjects

Function objects that have no additional requirements. Mainly used for
manipulating and creating fields with expressions

addGlobalVariable Adds a variable to a global swak-namespace. Mainly
used for debugging and resolving issues where a variable is needed in
a BC before it is defined.

expressionField Create a new field from an expression

clearExpressionField Erase a field created with expressionField

manipulateField Modify a field in memory

createSampledSet Create a sampled set that can be used by other swak-
entities (mainly boundary conditions)

createSampledSurface Create a sampled surface that can be used by
other swak-entities (mainly boundary conditions)

8

http://openfoamwiki.net/index.php/Contrib_simpleFunctionObjects

solveLaplacianPDE Solve the Poisson equation

∂ρT

∂t
−∇λ∇T = Sexpl + SimplT (1)

for T where ρ, λ and S can be specified

solveTransportPDE Solve the transport equation

∂ρT

∂t
+÷(ϕ, T)−∇λ∇T = Sexpl + SimplT (2)

for T where ρ, λ and S can be specified. Plus the name of the field ϕ

5.1.5 simpleSwakFunctionObjects

Function objects based on the simpleFunctionObjects-library (which is a
prerequisite for compiling it).

Evaluate expressions and output the results

5.1.6 swakSourceFields

These classes allow to manipulate the solution. To use these the solver has
to be modified.

expressionSource Field that is calculated from an expression. To be used
as source-term or coefficient in some solver

forceEquation force an equation to fixed values in selected locations. Has
to be used after constructing the equation and before solving

These sources are based on basicSource and can be used without a modi-
fication of the solver (they are only available in the 2.x version):

SwakSetValue sets values according to a mask or the mechanism provided
by basicSource

SwakExplicitSource Uses the calculated source term on the right hand
side of the equation

SwakImplicitSource Uses a calculated scalar-field to add an implicit
source term (source is without the actual field)

5.1.7 swakTopoSources

topoSources for cellSet and faceSet. Can be used with the cellSet and
faceSet-utilities

9

5.1.8 swakFiniteArea

Implements parsers for the finiteArea-stuff in 1.6-ext. Also implements
groovyBC for areaField and expressionField and other function objects

5.1.9 groovyStandardBCs

Collection of boundary conditions that give standard boundary conditions
the possibility to use expression for the coefficients

Contributions to this library are explicitly encouraged. Please use the
Mercurial-branch groovyStandardBCs to groovyify standard boundary con-
ditions.

5.1.10 pythonIntegration

Embeds a Python-interpreter.

pythonIntegrationFunctionObject Executes Python-code at the usual ex-
ecution times of functionObjects. The interpreter keeps its state

This library is only compiled if the paths to the Python-Headers are
configured in the swakConfiguration-file (see above)

5.1.11 fluFunctionObjectDriver

Driver for functionObjects that implemented entirely in Python using the
pythonFlu-library

5.1.12 functionPlugins

Directory with a number of libraries with function-plugins:

swakFacSchemesFunctionPlugin functions with selectable discretiza-
tion schemes for FAM (only used in 1.6-ext)

swakFvcSchemesFunctionPlugin functions with selectable schemes for
FVM

swakLocalCalculationsFunctionPlugin calculations that are local to a
cell (Minimum of the face values or so)

swakMeshQualityFunctionPlugin calculate mesh quality criteria like or-
thogonality, skewness and ascpect ratio

10

swakRandomFunctionPlugin different random number distributions. Cur-
rently only exponential

swakSurfacesAndSetsFunctionPlugin calculates distances from sampledSurfaces

and sampledSets and projects calculated values from these onto a vol-
ume field

swakThermoTurbFunctionPlugin Access functions from the thermo-
physical model and the turbulence model in the current region. Loads
the model only if necessary

swakTransportTurbFunctionPlugin Same as above but for incompress-
ible models

swakLagrangianCloudSourcesFunctionPlugin Functions that get in-
formations like source terms from clouds of particles (due to technical
reasons this works only for the regular intermediate clouds)

swakVelocityFunctionPlugin Functions that work on the flow field (cur-
rently only the local Courant-number)

5.2 Utilities

5.2.1 funkySetFields

Utility that allows creation and manipulation of files with expressions

5.2.2 funkySetAreaFields

Utility like funkySetFields for areaFields (only works with 1.6-ext)

5.2.3 funkySetBoundaryField

Sets any field on a boundary to a non-uniform value based on an expression.
Acts without deeper understanding of the underlying boundary condition

5.2.4 replayTransientBC

Utility to quickly test whether a groovyBC gives the expected results. Writes
the specified fields with the applied boundary condition but doesn’t do any-
thing else.

Can be used for other BCs as well

11

5.2.5 funkyDoCalc

Evaluates expressions that are listed in a dictionary using data that is found
on the disc and prints summarized data (min, max, average, sum) to the
screen

5.3 Examples

If not otherwise noted cases are prepared by a simple blockMesh-call.
Note: All the cases here are strictly for demonstration purposes and

resemble nothing from the ‘real world’

5.3.1 groovyBC

The old groovyBC-Demos

• pulsedPitzDaily

Solver pisoFoam

Also demonstrates manipulateField, expressionField and clearField

from the swakFunctionObjects. patchExpression from simpleSwakFunctionObjects.
solveLaplacianPDE and solveTransportPDE for solving equa-
tions

• wobbler

Solver solidDisplacementFoam

• circulatingSplash

Solver interDyMFoam

• movingConeDistorted

Solver pimpleDyMFoam

Also demonstrates swakExpression with surface. Due to a prob-
lem described below this currently doesn’t work

• average-t-junction

Solver pimpleFoam

• delayed-t-junction

Solver pimpleFoam

12

Demonstrates Delayed variables to simulate an inflow that depends
on the value of the outflow

• multiRegionHeaterFeedback

Solver chtMultiRegionFoam

Mesh preparation Execute the script prepare.sh in that directory

Also demonstrated patchExpression and swakExpression from
simpleSwakFunctionObjects.

• fillingTheDam

Solver interFoam

Also demonstrates Usage of a sampledSet defined in the controlDict
do determine the average filling height. Also stored variables for
not switching back once the criterion is reached. Global variables
defined by a function object

• sprinklingInlet

Solver interFoam

Description Winner of the swak4Foam-competition at the 6th OpenFOAM-
Workshop (2011). By Peter Keller

• potentialPitzDaily

Solver potentialFoam

Description Demonstrates the use of groovyB with potentialFoam

(also a problem connected with that). Provided by Martin Backer

5.3.2 FunkySetFields

Example dictionary for funkySetFields

5.3.3 FunkySetBoundaryFields

Example dictionary for funkySetBoundaryFields. Sets nonsense boundary
conditions for the world famous damBreak-case

13

5.3.4 InterFoamWithSources

Demonstrates usage of expressionSource
Due to differences in the original interFoam-solver this doesn’t work on

certain OpenFOAM-versions (most specifically 1.6-ext).
The only modifications to the original solver are found at the end of

createFields.H and in UEqn.H (the added source terms).

5.3.5 InterFoamWithFixed

Demonstrates usage of forceEquation
Due to differences in the original interFoam-solver this doesn’t work on

certain OpenFOAM-versions (most specifically 1.6-ext).
The only modifications to the original solver are found at the end of

createFields.H and in UEqn.H (the fixing of the velocities).

• interFoamWithSources

Slightly modified version of interFoam. Adds a source term to the
momentum equation. The source term is an expression that is defined
at run-time

• mixingThing

Demonstration case for it.

Preparation Run the script prepare.sh to prepare the case

5.3.6 FiniteArea

Demonstration of the finiteArea-stuff that works with 1.6-ext

• swakSurfactantFoam

Variation of surfactantFoam that adds an expressionSource

• planeTransport

Demonstration case

Preparation Use blockMesh and makeFaMesh

Solver surfactantFoam (without source term) or swakSurfactantFoam

Demonstrates FAM-specific swakExpressions and groovyBC (as
well as the expressionSource)

14

5.3.7 other

Cases that don’t have a groovyBC

• angledDuctImplicit

Solver rhoPorousSimpleFoam

Mesh preparation Execute the makeMesh.sh-script in that direc-
tory. If you want to run in parallel call the decomposeMesh.sh-
script with the number of processors as an argument

Demonstrates Usage of the swakTopoSources. Compares different
approaches to evaluating with the swakExpression-functionObject.
Also an example dictionary that demonstrates the use of funkyDoCalc

• angledDuctImplicitTransient

Solver rhoPorousMRFPimpleFoam

Mesh preparation Execute the makeMesh.sh-script in that direc-
tory. If you want to run in parallel call the decomposeMesh.sh-
script with the number of processors as an argument

Demonstrates The same as angledDuctImplicit but also the out-
put of temporal changes

• capillaryRise

Solver interFoam

Case preparation run the supplied script prepareCase.sh

Demonstrates Usage of a sampled surface to track the interface in a
VOF-simulation

• mixingGam

Solver interFoam

Case preparation run the supplied script prepareCase.sh

Demonstrates Emulate a “moving gravitation” by using the manipulateField-
functionObject to recalculate gh and ghf

15

5.3.8 PythonIntegration

Demonstrate the integration of Python. Mostly using PyFoam but also with
pythonFlu

• manipulatedPitzDaily

Solver simpleFoam

Demonstrates Usage of PyFoam to manipulate the fvSolution-file
during the run (possible application: unphysical initial conditions
cause the run to fail during startup with “normal” relaxation val-
ues)

• findPointPitzDaily

Solver simpleFoam

Demonstrates Usage of the pythonFlu-integration to find the point
where the recirculation behind the step ends. Also tries to plot
the result using the matplotlib-library

• bed2OfPisa

Solver twoPhaseEulerFoam

Demonstrates Usage of PyFoam to read the direction of gravity and
feeding it into a goovyBC via global variables

Case preparation Just call funkySetFields -time 0

• multiRegionHeaterBuildFunctionObjects

Solver chtMultiRegionFoam

Demonstrates Building the specification of function objects at run-
time via a Python-script

5.3.9 solvePDE

Examples for the functionObjects that can solve Partial Differential equa-
tions

• flangeWithPDE

Solver laplacianFoam

16

Demonstrates The usage of the functionObject that solves the
laplacian (Poisson) equation and (hopefully) that it gets the same
result as the native solver

Case preparation Allrun-script is provided

• pitzDailyWithPDE

Solver scalarTransportFoam
Demonstrates Solving additional transport equations

5.3.10 BasicSourceSubclasses

These examples test the source terms based on basicSource. They only
work with OpenFOAM 2.x and all use the simpleFoam-solver

• pitzDailyWithSwirl

Demonstrates Fixing the values of the velocity in a region with
SwakSetValues

• pitzDailyWithExplicitPoroPlug

Demonstrates Implementing a simple porous plug by adding the
Darcy-term as a source term with SwakExplicitSource

• pitzDailyWithImplicitPoroPlug

Demonstrates Same as pitzDailyWithExplicitPoroPlug but with
an implicit source term with SwakImplicitSource

5.3.11 Lagrangian

Tests for the functionObjects that create and evolve a cloud of particles

• hotStream

Solver replayTransientBC
Mesh preparation prepareCase.sh-script
Demonstrates 3 clouds (kinematic, reacting, solidParticle). Loading

of a thermophysical model with a functionObject. Plugin func-
tions for information about the clouds

• angledDuctWithBalls

Solver rhoPimpleFoam
Demonstrates Thermo-cloud. Functions for lagrangian particles

17

5.3.12 tests

Simple test cases for specific features

• randomCavity

Testing of different seeds for the rand-function. Also tests the
randFixed-function

5.4 maintainanceScripts

Undocumented scripts used for maintaining swak4Foam. If you don’t un-
derstand them, don’t use them

6 Bug reporting and Development

6.1 Bug reports

The preferred place for bug reports is http://sourceforge.net/apps/mantisbt/openfoam-
extend/search.php?project_id=10&sticky_issues=on&sortby=last_updated&dir=DESC&hide_status_id=90

A sourceforge-account is required for reporting

6.1.1 Things to do before reporting bug

If you’re reporting a bug about the compilation please run Allwmake twice
and only report the messages from the second run. This makes analyzing
the log easier as only the unsuccessful commands will be reported.

If the problem seems to be a missing library rerun the compilation to
make sure that there wasn’t a problem with that.

6.2 Development

Contributions to to swak4Foam are most welcome. If you want to contribute
clone the Mercurial archive of the sources

hg clone http://openfoam-extend.hg.sourceforge.net:8000/hgroot/openfoam-extend/swak4Foam

Change to the branch that you want to improve (usually default) and create
a new branch

hg branch <branchName>

18

http://sourceforge.net/apps/mantisbt/openfoam-extend/search.php?project_id=10&sticky_issues=on&sortby=last_updated&dir=DESC&hide_status_id=90
http://sourceforge.net/apps/mantisbt/openfoam-extend/search.php?project_id=10&sticky_issues=on&sortby=last_updated&dir=DESC&hide_status_id=90

where <branchname> is an easily identifiable name that makes the pur-
pose of the branch clear (for instance bugfixWrongRandomFunction or
featureHyperbolicFunctions). Don’t work on the default branch or any
other branches that are not “yours”. Such contributions will not be merged

Once development on the branch is finished export the relevant change-
sets with

hg export <nodeID>

(nodeID being the ids of “your” changesets) and send them to the maintainer
(or attach them to a bug report on Manits). The changes will be reviewed
and merged into the default branch (do not attempt to do this yourself).
Patches generated with hg export make sure that all changes are attributed
to the original developer (you).

An alternative would be the bundle command. Just do

hg bundle <bundlefile>

and then send the bundlefile. This will include all commits that are not
in the upstream repository and will allow similar inclusion in the upstream
as export.

Once you have proven by successfully submitting changesets via hg

export you can ask for write access to the mercurial repository.

6.2.1 Suggest reading

These topics may be “new” for the average OF-developer:

Mercurial A short tutorial on this can be found at http://mercurial.selenic.com/guide/.
If you already know git the http://mercurial.selenic.com/wiki/GitConcepts
may be enough for you

bison/flex This pair of compiler generator tools generate the parsers for
the expressions. Google for a tutorial that looks promising to you.

For a short example that shows how a new function was added to two
parsers have a look at this changeset that added the cpu()-function to
the field and the the patch-parser (usually you’ll have to write a new
method for the driver too):

hg diff -c 8604e865cce6

19

http://mercurial.selenic.com/guide/
http://mercurial.selenic.com/wiki/GitConcepts

6.2.2 Special branches

Currently the main branches are:

default The main branch. This is the brancht that the general public will
receive. It compiles under 1.7 and 1.6-ext

port_2.0.x The branch that compiles under OpenFOAM 2.0. This will
eventually become the default-branch

debianPackaging Branch for generating new Debian-packages of swak4Foam.
If somebody wants to “inherit” this: contact the maintainer

finiteArea In this branch the things for the finiteArea-discretization (only
present in 1.6-ext) is developed. Usually gets merged back into the
default-branch once a feature is completed

6.2.3 Distributed bug-tracking

As an experimental feature distributed bug-tracking was introduced using
the Artemis-extension for Mercurial (see http://hg.mrzv.org/Artemis/).
An up-to-date version can be installed by

hg clone http://hg.mrzv.org/Artemis/

somewhere and installing the plugin by editing .hgrc.
This is not the official bug-tracker for swak4Foam. It is used for keeping

track of new features that are to be introduced to swak4Foam and may be
discontinued if the experiment proves to be unsuccessful.

7 Copyright

swak4Foam is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version. See the file COPYING in this directory, for a description of the
GNU General Public License terms under which you can copy the files.

8 Known bugs

The following list is not complete. If the Artemis extension (see above) is
installed then

20

hg ilist

gives a more up-to-date list

8.1 Moving meshes and sampledSurfaces

It seems that with moving meshes sampledSurfaces don’t get updated.
This seems to be a problem with OpenFOAM itself (the regular surfaces-
functionObject doesn’t get updated. This is currently investigated

8.2 Missing support for interpolation and point-Fields

Apart from patches and internal fields the support for interpolation from
cells to faces (and vice versa) is incomplete as well as point fields (although
they are supported in the grammar)

8.3 Caching of loaded fields not working

This is especially evident for the funkyDoCalc-example

8.4 Possible enhancements of the code

Not really bugs, but stuff that bugs me

8.4.1 Pointers in the driver code

This is necessary because of bison. Investigate possibilities to replace these
by tmp and autoPtr

8.5 Possible memory loss

valgrind reports some lost memory for stuff that is not directly allocated
by swak4Foam (in OpenFOAM-sources)

Will investigate. Relevant places are marked by comments in the code.
Also the construction of sampledSet seems to loose memory

8.6 No point-vector construction for Subsets

The same problem that was mentioned in https://sourceforge.net/apps/mantisbt/openfoam-
extend/view.php?id=130 is also true for subsets. But as the interpolation is
not implemented for most subsets this will be postponed

21

https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=130
https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=130

9 History

9.1 2010-09-13 - version number : 0.1

First Release

9.2 2010-12-18 - version number : 0.1.1

New release Most important changes

9.2.1 Parser for sampledSurfaces

Now expressions for the field on a sampled surface can be evaluated. All
sampledSurfaces offered by OpenFOAM now can be used

9.2.2 Multiline variables

The variables entry (most notably used in groovyBC and swakExpression)
now can be a list of strings. This allows some kind of “formatting” (one
expression per line) and should improve readability

9.2.3 Two maintainance-scripts were added

These can copy the libraries and utilities to the global installation (for those
who think that the swak4Foam-stuff is stable enough and want to ‘bless’ all
users at their site with it). Note that any local installation still takes prece-
dence (because $FOAM_USER_APPBIN is before $FOAM_APPBIN in the $PATH

9.2.4 Parsers using ‘external variables’ are now run-time se-
lectable

This allows the inclusion of other parsers with the regular swak4Foam parsers
and include them seamlessly with the variables-mechanism for ‘externals’
(in other words: you can add your own parser in a separate library without
having to change anything about the overall swak4Foam, but it behaves as if
it was part of it)

9.3 2011-01-30 - version number : 0.1.2

9.3.1 Support for Finite Area-stuff

Now there is support for the finiteArea-library found in 1.6-dev. The
support is found in a separate library swakFiniteArea. It has

22

• a parser faField for areaFields

• a parser faPatch for patches of areaFields

• a variant of groovyBC for these patches

• a computed source faExpressionSource

• Function-object-variants for areaFields: clearExpression, expressionField
and manipulateField. These work the same as their volField-
counterparts

9.3.2 Bugfix for compiling in single precision

See https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=49

9.3.3 New function nearDist

See https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=44

9.4 2011-04-20 - version number : 0.1.3

New features and changes are (this list is not complete):

9.4.1 New utility funkySetAreaField

Like funkySetFields for finiteArea. Also writes out a volume field for easier
post-processing

9.4.2 Refactoring of groovyBC and groovified boundary conditions

Makes it easier to use the groovyBC-machinery for other boundary condi-
tions. Two standard boundary conditions were groovified. Others may follow

9.4.3 Easier deployment

If no simpleFunctionObjects are present they can be downloaded by a
script. Also scripts to handle global installations of swak4Foam

9.4.4 Force equations

A class to force equations to certain values according to expressions

23

https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=49
https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=44

9.4.5 New utility funkyDoCalc

Utility does calculations on saved results and outputs single numbers (min,
max, sum, average) to the terminal. Can be used for reporting or validity
checks

9.4.6 Debian packaging

Crude packaging for Debian

9.4.7 Lookup-tables

A single-argument function can be specified as a piecewise linear function.
Basically works like timelines but the argument can be something else (not
only the time)

9.4.8 Stored variables

Variables that store their values between time-steps. Applications are statis-
tics or switches

9.4.9 Sampled sets

Sampled sets can now also be used as en entity on which calculation is
possible.

9.5 2011-07-26 - version number : 0.1.4

9.5.1 New features:

• Rewrite of rand and randNormal

– These two functions now can receive an integer seed that deter-
mines the pseudo-randooom sequence generated by these func-
tions

– Two functions randFixed and randNormalFixed were added.
While the usual rand functions generate a different result at ev-
ery time-steps for these functions the pseudo-random sequence is
determined only by the seed (not by the timestep)

• Binary min and max

Take the bigger/smaller of two fields. Helps avoid ?:-operations

24

• Allow writing of only volume-fields in funkySetAreaFields

Application: If the results of the calculation are only needed in Par-
aView

• Internal changes

– Use autoPtr for sets

– Update sets that change in memory or on disc

9.5.2 Bug-fixes

• funkySetAreaFields did not check for the correct fields
Fixed by Petr Vita

• surfaceProxy uses the wrong geometric data

• Avoid floating point exceptions with division of fields
Calculated boundaries were 0 and caused a division by zero

9.5.3 Packaging

• Update Debian packaging

– Packaging information for the currently used OF-version is gen-
erated (allows a separate swak-package for every OF-version

– Submission to launchpad added

• Deployment scripts
Now install to FOAM_SITE_APPBIN/LIBBIN

9.6 2011-10-03 - version number : 0.1.5

9.6.1 New features

• replayTransientBC now supports multiple regions
Uses the usual -region-option. Looks for a separate dictionary in the
system-directory of that region

• replayTransientBC allows execution of functionObjects
This can be switched on using the allowFunctionObjects-option

25

• Python-embedding
Allows the execution of Python-Code in a functionObject

This feature is still experimental and the organization of the libraries
is subject to change

• Global variables
It is now possible to define variables that are ‘global’: They can be
read in any entity.

Currently these variables can only be uniform.

To access global variables the specification-dictionary has to have a
wordList named globalScopes. The scopes are searched in that order
for the names of global variables. Having scopes allows some kind of
separation of the variables

• Simplified boundary condition groovyBCFixedValue

Added a boundary condition than allows to only fix the values. This
should help to avoid problems with cases that don’t like mixed (on
which the regular groovyBC is based)

• Function objects to solve PDEs
Two function objects that solve Partial Differential Equations during
a run have been added:

– one that solves a laplacian (Poisson) equation

– one that solves the transport equation for a scalar

The relevant coefficients (including explicit and implicit source terms)
can be specified using expressions

9.6.2 Administrative and packaging

• Inject swak4Foam into a distro
Added a script that takes the current sources, copies them into the ap-
propriate places of a OpenFOAM-installation and slightly rewrites them
to compile in this place. What happens then (committing them into
the repository or just plain compilation) is up to the maintainer

• Absorb simpleFunctionObjects

As many parts of swak4Foam depend on it the simpleFunctionObjects
have now been absorbed into swak4Foam. They can still be compiled
on their own

26

9.6.3 Bugfixes

• Variables not working for parallel computations
If a variable is defined and the patch which it is defined on doesn’t have
any faces the variable is reported on that processor as not existing and
the whole run fails

9.7 2012-01-04 - version number : 0.1.6

9.7.1 Cases changed

• circulatingSplash

Fixed according to a suggestion by Andreas Otto. Now runs again
(used to crash some time-steps into the beginning)

9.7.2 Infrastructure

• Check for correct bison-version
The Allwmake-script now checks for the correct bison-version (and the
existence of bison) and fails if it doesn’t seem to be the right one

• Supply a header with preprocessor-symbols about the used OF-version
To allow distinguishing different OF-versions as discussed in the bug re-
port http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=114
the Allwmake-script now generates a header file foamVersion4swak.H

that defines the symbols FOAM_VERSION4SWAK_MAJOR, FOAM_VERSION4SWAK_MINOR
and FOAM_VERSION4SWAK_PATCH

9.7.3 Technical

• Refactoring of the FieldDriver

– now can also produce surfaceFields
– full support of tensor, symmTensor and sphericalTensor

• Refactoring of the FaFieldDriver

– now can also produce edgeFields

No support for tensors yet

• Writing of storedVariables
If necessary (for instance swakExpression-functionObject) the storedVariables
are written to disc (into a subdirectory swak4Foam of the timestep) and

27

http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=114

are reread at the start. This allows consistent restarts (for instance if
a flow was summed using the variable) if the expressions stay the
same.

• simpleFunctionObjects now write vectors and tensors without brack-
ets
Data files can now be written without brackets but each component
on its own. The number of entries in the header is not adjusted

9.7.4 New features

• General phi in solveTransportPDE

Due to the refactoring of the FieldDriver now phi can be specified
by a general expression (instead of ‘only’ a field-name)

• funkySetFields now also writes surfaceFields
Can write surfaceVector and surfaceScalar-Fields. Condition has
to be consistent

• Function objects now surfaceField-aware
expressionField and manipulateField now can create or modify
surfaceFields

• funkySetFields and function objects support tensors
funkySetFields and the function objects expressionField and manipulateField

now also work with the three tensor-types

• Extension of the expressionToFace topoSet

If the expression evaluates to a surfaceField then this is used as a flag
whether or not the face is in the faceSet. If the expression evaluates
to a volScalarField then the old semantic applies (faces are in the
set if one cell is true and the other is false).

This only works for internal faces

• addGlobalVariable allows setting more than one value
If there is an entry globalVariables then this dictionary is used to
set the variables

• Function object calculateGlobalVariables
Calculates variables and then pushes them to a global namespace

28

• Generate a dummy phi in replayTransientBC

New option added that generates a phi field with value 0 to keep
boundary conditions like inletOutlet happy

• Function object to dump expression results
The functionObject dumpSwakExpression dumps the complete results
of a swakExpression to file at each timestep. This produces huge files
and is therefor not endorsed

• Additional options for funkySetFields
Add the options allowFunctionObjects and addDummyPhi to execute
functionObjects and add a phi-field (for fields that require these)

• simpleFunctionObjects write CSV-files
Setting the option outputFileMode to csv writes CSV-files. The
option-value foam is the default (old style). The option-value raw

writes the values delimited by spaces (no brackets for vectors and ten-
sors)

• Submeshes automatically read if searchOnDisc specified
If a submesh is not yet in memory and the option searchOnDisc is set,
the mesh is automatically read into memory and kept there

• Conditional functionObjects
The simpleFunctionObjects-library now has a number of functionOb-
jects that allow the conditional execution of a list of function objects.

These are

executeIfExecutableFits if the name of the executable fits a regular
expression the function objects are executed

executeIfObjectExists if a named object exists (or alternatively:
doesn’t exist) in the registry execute the function objects. Type
checking also implemented

executeIfEnvironmentVariable execute if an environment variable
satisfies a certain condition (exists, doesn’t exist, fits a regular
expression)

executeIfFunctionObjectPresent execute if a specific functionOb-
ject is present. This can help prevent failures if a functionObject
is missing for technical reasons

In addition the simpleSwakFunctionObjects-library has

29

executeIfSwakObject Evaluates a logical swak-expression. The re-
sults are either accumulated using logical or (if one value is true
the result will be true) or logical and (all values have to be true)

The pythonIntegration-library has

executeIfPython Evaluates a Python-code-snipplet that returns a
value. If this value is “true” in Pythons standards then the func-
tionObjects are executed

• functionObject that reads gravitation
simpleFunctionObjects has an additional function object that reads
the direction of gravitation. The purpose is to assist boundary condi-
tions like buoyantPressure that rely on it to work. Best used together
with conditional function objects (“If g is missing”)

• PDE-functionObjects for finiteArea
Solve transport and laplacian equation

• funkySetAreaField now also writes edgeFields
Similar to the surfaceFields in funkySetFields

9.7.5 Bug fixes

• Compilation with Intel-Compiler possible
The Utilities failed with the Intel-compiler. Compilation now falls
back to good old g++

• Access to tensor-components not working
Because the tokens were not defined in the flex-files getting tensor
components with tensor.xx did not work. Fixed

• Constants for surfaceFields not working
Because surfaceFields know no zeroGradient the template makeConstant
did not work

• snGrad does not work for patches if the file is on disc
Change so that the field gets temporarily loaded to calculate the gra-
dient on the patch. Same for internalField and neighbourField

• potentialFoam does not correctly use a groovyBC

The reason is that groovyBC usually doesn’t get evaluated during con-
struction. The reason is that it is hard to tell whether all required

30

fields are already in memory. The current fix is a workaround: setting
evaluateDuringConstruction to true forces the BC to be evaluated
during construction

• Extra evaluation of boundary conditions causes failure
Extra evaluation of boundary condition that should fix the problem
with calculated patches causes funkySetFields to fail with stock
boundary conditions if not all fields are present in memory

9.8 2012-04-13 - version number : 0.2.0 Friday the 13th

9.8.1 New features

• Region name in simpleFunctionObject.outputs
To distinguish the output of various instances of functionObjects

from the simpleFunctionObjects-library in multi-region cases the
screen-output is prefixed with the region name. For the default re-
gion nothing changes. Directory names stay the same as they are
unambiguous anyway (they contain the name of the functionObject)

• Temporal operators ddt and oldTime

For fields (not expressions!) the value at a previous timestep can
be gotten via oldTime(field) if that information exists (also for
funkySetFields if the corresponding file field_0 exists.

For fields that support it (basically volume-fields) there is also a ddt-
operator that calculates the explicit time-derivative (if information
about the last timestep exists)

Currently implemented for

internalFields oldTime and ddt

patch only oldTime

cellSet,cellZone only oldTime

sampledSurface,sampledSet only oldTime

faceSet,faceZone oldTime

internalFaFields oldTime and ddt

faPatch only oldTime

If there is no old time value stored and in the parser dictionary the
parameter prevIterIsOldTime is set, then the previous iteration value
is used as the old time.

31

• Boundary condition groovcBCDirection

Based on the directionMixed boundary condition this allows to set a
boundary condition as a Dirichlet-condition only in certain directions
while in the other directions it is a gradient-condition

Note: this should have been in the last release but was forgotten to
merge into the default branch

• Boundary condition groovyBCJump

Boundary condition that imposes a jump in the value on a cyclic
boundary condition pair (based on jumpCyclic). Only works for scalar
values

Note: this should have been in the last release but was forgotten to
merge into the default branch

• Function to return the position of minimum and maximum
The functions minPosition and maxPosition return the position of
the minimum or the maximum of a scalar field

This is implemented for all field types

• Support for pointFields in the field-parsers
Now can read and generate pointFields.

Detailed features (apart from the standard symbols) are:

– Function point generates a constant pointScalarField

– Function pts() returns a pointVectorField with the point po-
sitions

– Functions pzone and pset generate logical fields according to ex-
isting pointZones or pointSets

– Functions interpolateToCell and interpolateToPoint inter-
polate from pointFields to volFields and from volFields to point-
Fields

Utilities and functionObjects affected by this are

– funkySetFields

– new topoSource expressionToPoint

– expressionField and manipulateField now can deal with point-
Fields

32

• Support for tensors in the finiteArea-field parser
The faField-parser now supports tensors, symmetric tensors and
spherical tensors.

Not all operators are supported because the are not instantiated in
1.6-ext

• New convenience-variables for the Python-Integration
These variables are added in the namespace to ease the writing of
Python-code whose output is consistent with OF

timeName Name of the current time as a string. Allows the con-
struction of directory names

outputTime Boolean that indicates whether this is a timestep where
OpenFOAM will write output

• Additional operators from the fvc-namespace
The missing operators from the fvc-namespace have been added to the
Field-parser. These are

d2dt2 for all volumeFields
flux for all volumFields. Needs a surfaceField as a first argument
meshPhi for volume-vector-fields. Optional with a scalar-field that acts

as the density as the first argument. Only works in the context
of a solver with a dynamic mesh and hasn’t been tested yet

The only missing operators from the fvc-namespace are volumeIntegrate=/=domainIntegrate.
These have been omitted as they are trivial to implement using other
functions

9.8.2 Infrastructure

• Full parallel compilation
Thanks to patches supplied by Bruno Santos (see http://sourceforge.net/apps/mantisbt/openfoam-
extend/view.php?id=105) compilation of the libraries is now possible
in parallel

• Version numbers and version number reporting
Releases up to now got a version number. Utilities now report the ver-
sion number. This should make it easier to find out whether problems
are due to an old version

Still looking for a way to do that for the libraries (so that they will
report it if dynamically loaded)

33

http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=105
http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=105

9.8.3 Packaging

• Update of the Debian-Packaging
make dpkg now genrates also a valid package if the current OpenFOAM-
installation is not installed using the dpkg.

9.8.4 Changes in the behavior

• Directory variables in Python-integration
For parallel runs the content of the caseDir-variable changed and a
few variables have been added

caseDir in parallel runs now points to the FOAM_CASE instead of the
processor subdirectory

systemDir points to the global system-directory

constantDir points to the global constant-directory

procDir in parallel runs points to the processor-subdirectory of the
current CPU

meshDir The mesh data (of the current processor in parallel runs)

timeDir Directory where data would be written to at the current time
(processor dependent)

• User must acknowledge parallelization in Python-integration
In parallel runs the user must set the isParallelized to true if the
parallelMasterOnly is set to false.

With that he indicates that in his opinion the Python-code has no bad
side-effects in parallel runs and that he doesn’t blame swak4Foam if
anyting bad happens

9.8.5 Bug fixes

• Field itself can not be used in funkySetBoundaryField

Bug reported: http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=124

An expression like 2*U did not work for the field U. Reason was that the
registry already held an object called U (the dictionary representation
of the field) and therefor refused to load/register another U.

Has been fixed by de-registering the dictionary U immediately after
loading.

34

http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=124

• No gradient for vectors in FieldParser
The gradient for a vector field (result: a tensor field) was not calculated.
It is now part of the grammar

• Some operators for tensors not working in 1.6-ext
tr, inv and det were not working for some tensort types in 1.6-ext.
The parser now fails if such a combination is used. Works OK for other
OF-versions

Also introduced a workaround for certain operators not being properly
defined for pointFields (by using the internal fields)

• x, y, z and xy etc not available as field names
These symbols could not be used as field names because they were used
for the components of vectors and tensors

Now these names are only used if the .-operator asks for a component.
This is implemented for these parsers

– FieldValues

– PatchValues

– SubsetValues (all Zones, sets and samples)

– finiteArea-Parsers: faPatch and faField

• Missing tensor components for point-Fields in some parsers
All parsers except the field-parser were missing the access to tensor
components in the grammar

• No vector construction possible for point-vectors (and tensors) in
PatchField
As mentioned in https://sourceforge.net/apps/mantisbt/openfoam-
extend/view.php?id=130 it was not possible to construct a point-
vector field using vector(toPoint(1),toPoint(1),toPoint(1)). Same
for tensors

• Incomprehensible error message in funkySetFields if the field is miss-
ing
The error message in funkySetFields that was issued when a field is
supposed to be created was not very helpful (something about the field
currently being an IOobject)

• Missing magSqr in parsers
This function was reported missing on the message board

35

https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=130
https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=130

• Wrong size when composing vectors and tensors for point-fields
The composed objects got their size from the current parser, not the
components. This resulted in a segmentation-fault for pointFields

• icc does not compile executeIfExecutableFitsFunctionObject on
Linux
Preprocessor symbol linux unknown. Replaced with __linux__

• Enhancement to the trackDictionary-functionObject
Now handles bad or non-existent filenames for dictionaries to track

Fix provided by Martin Beaudoin

9.9 2012-10-18 - version number : 0.2.1

9.9.1 Requirements

• flex 2.5.35

This version is needed for the reentrant parsers. 2.5.33 may work
but is untested. Version 2.5.4 which is on some old systems definitely
does not work

• bison 2.4

Version 2.3 compiles but there is an offset-problem with the locations
that breaks the Plugin-functionality

Mac-users will have to install bison from another source (for instance
MacPorts)

9.9.2 Bug fixes

• Make sure that Allwmake always uses the bash

On Ubuntu /bin/sh is something else and the scripts fail. Hardcode
to /bin/bash

• downloadSimpleFunctionObjects.sh still in Makefile
This script (which was removed long ago) was still referenced in the
Makefile.

• grad in fields added dimensions
grad and other operators from fvc added dimensions to values that
were supposed to be dimensionless. This has been fixed

36

• Default condition for surface fields wrong size in funkySetFields

Due to a typo the constructed condition field was too short for surface-
fields (too long for volume-fields, but that didn’t matter)

• flip() for faceSet not correctly calculated
A SortableList was used which meant that the vector with the flip
values was not in the correct order

• fset() crashes when faceSet has boundary faces
This problem was due to a non-special treatment of faces on the bound-
ary. Fixed (for faceZone as well).

Also boundary faces are now honored in expressionToFace if the ex-
pression is a surface-field (for the volume-field logic boundary faces will
never work)

• groovyBC produced incorrect results with wallHeatFlux etc
The reason was that during construction refGradient, refValue etc
were not read correctly (if present).

This is now fixed in groovyBC and the other BCs (groovyBC for point-
Fields and groovyBCDirection)

• Global variables not found in faField

The Lexer correctly identified the variable but the getField method
did not know how to get it.

Fixed

• Wrong type of condition field in funkySetAreaFields

If no condition was evaluated the utility generated a pseudo-field of
the wrong length

• calculated-patches 0 for some operations
For some operations in the Field-driver the calculated-patches had
the value 0 instead of the number of the next cell. This caused certain
calculations to fail (give 0)

The FaField-driver did no fixing of the calculated-patches at all.

This is fixed

• sqr of a vector should produce a symmTensor

Reported in http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=150

Added the sqr at the right place to the grammars. Also some other
missing tensor operations (dev and symm).

37

http://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=150

• funkySetFields produced wrong values on processor patches
Patch fields were not copied any no correctBoundaryField was called
for technical reasons.

Fix: values copied by hand

• sortedToc does not exist for 1.6-ext
Introduced a preprocessor symbol that allows using sortedToc on newer
versions

• Wrong size() and pointSize() reported for FaField-driver
This was due to a strange () (still don’t know what happened there)

• Memory leak in the field drivers
The strings of parsed IDs were not properly deleted. Funnily this was
done correctly in the Patch and the Subset-driver. Also for timelines-

Also fixed a leak with the labels of plugin-functions that was present
with all drivers

• Maintenance scripts not working with non-=bash= /bin/sh

Reported by Oliver Krueger that on systems where /bin/sh is not a
bash anymore (newer Ubuntu and SuSE) the sourcing of theFiles.sh
doesn’t work anymore.

Fixed and moved all the files to the maintainanceScripts-folder

• cof and diag undefined
Added. Diag had to be reprogrammed as it is not implemented for
fields (probably for performance reasons).

Also some tensor operators were missing (probably lost during copy/-
paste)

• No new file created if number of patches for patchAverage changes
Reported in https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=153

Fixed by removing all file pointers if the number of patches changes

• variables intolerant on spaces
Spaces in the list of variables made the reading fail because words can’t
contain spaces. For instance

"var =T*2;"

38

https://sourceforge.net/apps/mantisbt/openfoam-extend/view.php?id=153

Now all the spaces are removed before assigning to variables. This will
also remove spaces on the “inside” thus making

"v ar =T*2;"

the same as the above expression. But it is unlikely that the call will
be used in this way

• Missing div-operations
These valid div-operations were missing from the grammar:

– Divergence of a volume-tensor (all three kinds) producing a vector

– Divergence of a surface-tensor (all three kinds) producing a
volume-tensor

• Fields created by expressionField written too late
Fields created by that function object were written with the value
from the timestep before because the regular write occurs before the
execution of the function objects.

Fixed

• storedVariables did not require a initialValue

Now an initial value is required (instead of the default empty string
which caused parser failure)

• Dimension checking makes expressionField fail
Reason is that during the calculation of the variables dimensions are
checked.

Now the functionObject switches the checking off. But a more general
solution is desirable

• expressionField at last timestep not written
The functionObject does not write (and calculate) the field at the last
timestep.

Fixed with an one-liner

• groovyBC makes interFoam-runs fail unpredictably
Reason was an uninitialized falueFraction which sometimes has val-
ues that cause a floating point exception. Fixed

39

• Global variables of different sizes break parallel runs
Because size() was equal to the expected size on some processors. Not
on all. Now the branch is taken if the size is equal on all processors

• Fields treated with readAndUpdateFields were written one timestep
too late
Fields were not written after the boundary condition was updated.
Now they are

9.9.3 Enhancements

• Topology-operators now support variables etc
The topology operators expressionToCell, expressionToFace and
expressionToPoint now support variables and the other supporting
keywords if being constructed with a dictionary (for instance from the
topoSet-utility)

• Fields touched by manipulateField being written
Usually the manipulated version of the fields is not written as the
manipulation happens after writing. The option writeManipulated

enforces writing.

Writing is not the default behavior to avoid side-effects

• Indicator functions onPatch and internalFace added to field-expressions
The function onPatch(name) returns a surface-field that is 1 on all faces
that belong to patch name.

The function internalFace() is 1 on all internal faces and 0 on all
patches

• Non-uniform second argument for pow
Now the second argument to the pow-function can be a non-constant

• Added transpose to the tensors
The expression A.T() transposes the tensor A (for symmetrical and
spherical tensors it leaves them untouched)

• Added unit tensor I to parsers
If no field I is defined then this is used as the unit-tensor

• Added the Hodge dual operator
The unary operator * calculates for tensors and symmetrical tensors
the hodge dual

40

• replayTransientBC can now switch on function-objects via dictionary
The optional entry useFunctionObjects switches on the execution of
function objects during the calculation

• replayTransientBC can now create a phi-field via dictionary
The optional entry addDummyPhi creates a phi-field

• expressionField now allows the specification of a dimension
The dimensions-entry is now read at the same time the variables are
read (this should work for all programs/functionObjects where the
parser is not constructed using a dictionary but the dictionary is later
searched for the variables-entry)

9.9.4 New features

• Allow dynamically loaded plugins that add new functions to parsers
This allows easy extension of the functionality of swak4Foam without
modifying the grammar files.

The way it works is that new functions are added to a runtime-selection
table. If the grammar can not resolve a symbol as a built-in function or
a field (but only then) it looks up the name in this table and evaluates
the function. Parameters are parsed separately and can be:

primitive data types integer, float, string and word

swak-expression an expression parsed by one of the swak-parsers.
The type of this expression does not necessarily have to be the
same as the one of the ‘main’ expression.

The first time a plugin function is searched swak4Foam prints a list
of all the available functions of this type. Information included is the
return type and the types of the parameters (these include the parser
used, the expected type and a parameter name).

Libraries with plugin-functions are added via the libs-entry in the
system/controlDict

A number of plugin-libraries are already included covering these topics:

– Evaluation of functions of the turbulence, transport or thermo
model

– Different random number distributions

41

– Functions to “project” sampledSets and sampledSurfaces onto
a volume-field

– Execute explicit discretization functions (like grad) but select
the used scheme in the function instead of using the value from
fvSchemes

– Calculations of the mesh quality (same way checkMesh does) and
return as fields

– Do calculations locally on a cell (like the maximum on its faces)
– Get the source fields and other properties from lagrangian

clouds based on the basic intermediate cloud classes (Kinematic,
Thermo, Reacting, ReactingMultiphase)

It has been tried to make the names unique instead of short. Usually
function names from one library are prefixed with the same short string.

• Dynamically generated lists of functionObjects
The new dynamicFunctionObjectListProxy in the simpleFunctionObjects
can generate a functionObjectList from a string and execute them
during the run like regular function-objects.

The string is provided by a special class (the so called dictionaryProvider).
Current implementations for the provider are:

fromFileDictionaryProvider reads the text from a dictionary file
stdoutFromCommandProvider executes a program and takes the

standard output as the dictionary text
stdoutFromPythonScriptProvider executes a python-script and

takes the stdout as the dictionary text

The string must be in the format o a regular OpenFOAM-dictionary
with an entry functions from which the functionObjects are generated

• Function object readAndUpdateFields
This FO in the simpleFunctionObjects reads a number of fields and
updates their boundary conditions at every timestep.

Main purpose is to let groovyBC do calculations and use the results for
post-processing purposes

Does not support surface-fields as these don’t have a correctBoundaryConditions-
method.

Example of the usage in the angledDuctImplicit-case (the results are
of limited value because of the temperature boundary condition)

42

• Source terms based on basicSource

Three source terms were added. These source terms are in the
swakSourceFields-library and can be used with solvers that use the
sourcesProperties-dictionary. The sources are

SwakSetValue sets values according to a mask or the mechanism
provided by basicSource

SwakExplicitSource Uses the calculated source term on the right
hand side of the equation

SwakImplicitSource Uses a calculated scalar-field to add an implicit
source term (source is without the actual field)

These fields are only implemented in the 2.x-version of swak because
the interface of basicSource is very different in 1.7 and a backport
was unnecessary

• Function objects that stop a run gracefully
simpleFunctionObjects now has a function object writeAndEndFieldRange
that stops a run (and writes the last time) if a field is outside a specified
range.

A similar function object writeAndEndSwakExpression is in the
simpleSwakFunctionObjects that stops if a swak-expression evaluates
to true. writeAndEndPython does the same in pythonIntegration.

Note: after the run is written one more timestep is calculated (this
seems to be due to the fact that FOs are calculated at the start of
a timestep). Also there are issues if the next timestep is a scheduled
write-time

• Function-objects to load thermophysical and turbulence models
New function objects in the simpleFunctionObjects allow the loading
of such models for solvers/utilities that don’t have such models but
where some functionObject (for instance) needs such a model to be in
memory

• Function-objects that create and evolve clouds of lagrangian particles
Added as part of the simpleFunctionObjects some functionObjects
that create a cloud of particles and evolve them at every timestep.

The appropriate fields needed by every cloud have to be present (either
supplied by the solver or via a functionObject)

43

• Function-object manipulatePatchField to manipulate the field on
patches
This function objects allows the manipulation of patch fields like
manipulateField allows the manipulation of the internal field. Only
use if desperate

• Delayed variables to simulate responses
If a variable is declared in the delayedVariables-list then its behavior
changes: when a value is assigned to that variable then the value is
not immediately used but after the time specified in delay. Values
are stored at intervals storeInterval and interpolated linearly. If no
stored data is available then the value of the expression startupValue

is used.

This feature allows the modeling of boundary conditions that react
with a delay to flow conditions

• Allow preloading of fields in funkySetFields

To satisfy the requirements of certain boundary conditions funkySetFields
now allows the preloading of fields. This is only available in dic-
tionary mode with the preloadFields-entry (for each entry in the
expressions-list separately)

9.9.5 Infrastructure

• Allwmake creates symbolic links in swakFiniteArea

The links to mybison and myflex are missing when the sources are
downloaded as a tarball. The Allwmake-script now creates these links
if they are missing

• Reformatting of the parser sources
Sources of the parsers have been completely reformatted to make them
more readable and maintainable

• Move non-parser sources in swak4FoamParsers into sub-directories
Make the directory a little bit cleaner

44

	Description
	About this document
	Scope
	Technical

	Contributors etc
	Original Author
	Current Maintainer
	Contributors
	Documentation

	Installation/Compilation
	Requirements
	Building
	Additional configuration

	Global installation
	Packaging
	Debian

	Contents
	Libraries
	swak4FoamParsers
	simpleFunctionObjects
	groovyBC
	swakFunctionObjects
	simpleSwakFunctionObjects
	swakSourceFields
	swakTopoSources
	swakFiniteArea
	groovyStandardBCs
	pythonIntegration
	fluFunctionObjectDriver
	functionPlugins

	Utilities
	funkySetFields
	funkySetAreaFields
	funkySetBoundaryField
	replayTransientBC
	funkyDoCalc

	Examples
	groovyBC
	FunkySetFields
	FunkySetBoundaryFields
	InterFoamWithSources
	InterFoamWithFixed
	FiniteArea
	other
	PythonIntegration
	solvePDE
	BasicSourceSubclasses
	Lagrangian
	tests

	maintainanceScripts

	Bug reporting and Development
	Bug reports
	Things to do before reporting bug

	Development
	Suggest reading
	Special branches
	Distributed bug-tracking

	Copyright
	Known bugs
	Moving meshes and sampledSurfaces
	Missing support for interpolation and point-Fields
	Caching of loaded fields not working
	Possible enhancements of the code
	Pointers in the driver code

	Possible memory loss
	No point-vector construction for Subsets

	History
	2010-09-13 - version number : 0.1
	2010-12-18 - version number : 0.1.1
	Parser for sampledSurfaces
	Multiline variables
	Two maintainance-scripts were added
	Parsers using `external variables' are now run-time selectable

	2011-01-30 - version number : 0.1.2
	Support for Finite Area-stuff
	Bugfix for compiling in single precision
	New function nearDist

	2011-04-20 - version number : 0.1.3
	New utility funkySetAreaField
	Refactoring of groovyBC and groovified boundary conditions
	Easier deployment
	Force equations
	New utility funkyDoCalc
	Debian packaging
	Lookup-tables
	Stored variables
	Sampled sets

	2011-07-26 - version number : 0.1.4
	New features:
	Bug-fixes
	Packaging

	2011-10-03 - version number : 0.1.5
	New features
	Administrative and packaging
	Bugfixes

	2012-01-04 - version number : 0.1.6
	Cases changed
	Infrastructure
	Technical
	New features
	Bug fixes

	2012-04-13 - version number : 0.2.0 Friday the 13th
	New features
	Infrastructure
	Packaging
	Changes in the behavior
	Bug fixes

	2012-10-18 - version number : 0.2.1
	Requirements
	Bug fixes
	Enhancements
	New features
	Infrastructure

