
Introduction
The Utilities

The library
Advanced topics

Conclusion

pyFoam
Happy foaming with Python

Bernhard F.W. Gschaider
bgschaid@ice-sf.at

ICE Strömungsforschung

Zagreb Summer-School
10.September 2009

bgschaid pyFoam 1/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview

1 Introduction
Overview
Python
Design and Conventions

2 The Utilities
Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

3 The library

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

4 Advanced topics
Configuration files
Cluster support
The PyFoam-network
Other

5 Conclusion

bgschaid pyFoam 2/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

Aim of this presentation

• This presentation wants to give an overview of PyFoam
• not everything will be mentioned (but the most important

concepts will be talked about)

• The two main parts of the presentation are

1 The utilities (the more popular part of PyFoam)
2 The library (the interesting part of PyFoam)

bgschaid pyFoam 3/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

Introducing Ignaz Gartengschirrl

Ignaz Gartengschirrl is a
CFD-engineer specialized in
calculating the infamous
damBreak-case. We will witness
his experiences with PyFoam
here.
We may call him Ignaz

Ignaz writes on the shell

1 > date

Fri May 15 01:56:12 CEST 2009

Ignaz’s Python-code

sum=0

2 for v in [7 ,13 ,42]:

sum+=v

4 print "The sum is",sum

this is a long line that will be <brk>

<cont> continued in the next line

Ignaz edits a file

1 fooCoeffs {

bar 23;

3 lst (inlet outlet);

}

bgschaid pyFoam 4/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

Motivation

How it started:

• The official Version:
• OpenFOAMTM is command-line oriented
• OpenFOAMTM-files have a simple, structured syntax

These two properties make it a very good candidate for
automatizing. PyFoam tries to help here

• The real version:
I wanted to watch the residuals during a run

Both are true

bgschaid pyFoam 5/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

What is Python

• Is a scripting language
• No compilation required

• Is object-oriented

• Comes batteries included : has a large standard-library for
many common tasks

• Non essential parts (like regular expressions) were moved to
the library

• Widely used
• Pre-installed on most Linux-systems because many system

tools (installers for instance) use it
• Becomes scripting language of choice for a number of

programs (amongst others the post-processors ParaView
and Visit and the pre-processor Salome)

bgschaid pyFoam 6/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

Why Python

... and not (for instance) Perl

• It is named after Monty Python. Perl and Ruby are only
named after jewelry

That should be reason enough. But there are other reasons:

• It has a very simple and clear syntax

• It is reasonably fast for a scripting language (OK. Perl is a
bit faster)

and the stuff from the previous slide

• Widely used

• Batteries included

bgschaid pyFoam 7/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

3 things you have to know about Python

... to understand the programming examples

1 Indentation does the same thing { and } do for C++

2 [] signifies a list (which is an array)

3 {} is a dictionary (whose elements are accessed with [key])

4 self is the same as this in C++ (The object itself)

Aeh. The 4 things to know about Python are

bgschaid pyFoam 8/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

Basic design considerations

• No compiled extensions

Plus More portable
Minus Performance problem when processing large

dictionaries

• Controls OpenFOAMTM from the outside
• Writes dictionaries and processes the output

• If possible only the standard-Python-libraries are used
• Eases deployment
• Exceptions are the library for parsing and for GnuPlot. They

are included in the distribution

• Basic classes are being unit-tested

• Currently it works with Python-versions from 2.3 to 2.6

bgschaid pyFoam 9/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

Conventions

• For utilities:
• Utility names always start with pyFoam
• If there is an OpenFOAMTM-utility in the argument list all

options after that utility are ignored by PyFoam
• Options for PyFoam start with -- and there is a complete

listing to be had with --help

• For the library
• Classes are organized according to their purpose under the

base name PyFoam
• Names try to by expressive enough but there is documentation

for most of the classes

bgschaid pyFoam 10/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Overview
Python
Design and Conventions

Someone is always there for you: --help

Ignaz wants to find out what pyFoamClearCase.py does

> pyFoamClearCase.py --help

2 Usage

=====

4 pyFoamClearCase.py <caseDirectory >

6 Removes all timesteps but the first from a case -directory. Also removes <brk>

<cont> other

data that is generated by sovers/utilities/PyFoam

8
Options

10 =======

--version show program ’s version number and exit

12 --help , -h show this help message and exit

14 Default

16 Options common to all PyFoam -applications

....

18 What

20 Define what should be cleared

22 --after=AFTER Only remove timesteps after this time

--processors -remove Remove the processor directories

24 --vtk -keep Keep the VTK directory

--no-pyfoam Keep the PyFoam -specific directories and logfiles

26 --keep -last Keep the data from the last time -step

--keep -regular Keep all the timesteps

bgschaid pyFoam 11/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

What the pyFoamRunner does

• Starts a solver

• Captures the output of the solver and
• sends it to terminal

• only outputs the time if started with --progress

• writes it to a logfile
• analyzes it and writes data (residuals etc) to a directory

• If called with --proc=N makes sure that the run is parallel
• Prepends mpirun or similar
• Appends --parallel

• Starts a server process that allows control of the run
• More on this later ...

• And a number of other things (did I mention --help?)

bgschaid pyFoam 12/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Using it

Ignaz wants to run the damBreak anew

1 > pyFoamRunner.py --clear interFoam -case damBreak

Clearing out old timesteps

3 /*---*\

| ========= | |

5 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5 |

7 | \\ / A nd | Web: http ://www.OpenFOAM.org |

| \\/ M anipulation | |

9 *---*/

Exec : interFoam -case damBreak

11 Date : May 14 2009

...

• Before running PyFoam removes all time-steps except the first one
• A log-file PyFoamRunner.interFoam.logfile is found in the case-directory

bgschaid pyFoam 13/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

The plotter utilities

• There are two flavors

pyFoamPlotRunner Similar to pyFoamRunner
pyFoamPlotWatcher Gets the log-file of a run (it may be still

running)

who both plot the data extracted from the output
• Data plotted is

Standard stuff Residuals, continuity, time-steps ...
• Can be switched on and off using --with-options

Application specific stuff Can be specified on the command line or
in a file

• Needs a regular expression to identify the data
• If a file customRegexp is found in the case or near the

log-file it is automatically used
• The next version of PyFoam will have a more foamy

syntax for customRegexp

bgschaid pyFoam 14/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Plotting graphs

Ignaz prepares a customRegexp

{"expr": "Courant Number mean: (%f%) max: (%f%)","name":"My Courant","<brk>

<cont> titles":["Mean","Max"]}

2 {"expr": "Liquid phase volume fraction = .+ Min\(gamma \) = -(%f%) Max","<brk>

<cont> name":"Negative fraction","logscale":True}

Ignaz runs the case again

> pyFoamPlotRunner.py --clear interFoam -case damBreak

2 Reading regular expressions from damBreak/customRegexp

Clearing out old timesteps

4

Looking at past glory: Ignaz plots a logfile

> pyFoamPlotWatcher.py --progress damBreak/PyFoamRunner.interFoam.logfile

2 Reading regular expressions from damBreak/customRegexp

t = 1

bgschaid pyFoam 15/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

What Ignaz sees

bgschaid pyFoam 16/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Caring for cases

• Cases in OpenFOAMTM are organized as collections files
and directories

Advantage Easy to handle using the usual system-tools
Disadvantage Hard to handle

• Try removing all timesteps except 0 and 0.5
with a single rm

• PyFoam offers a number of utilities for common tasks

• The OpenFOAMTM-files are essentially text-files
• PyFoam has tools to manipulate them

bgschaid pyFoam 17/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Collecting data with pyFoamPackCase

Ignaz’s boss wants to know how work on the
damBreak is going

Ignaz sends the results to his boss

1 > pyFoamPackCase.py damBreak --last

> ll *.tgz

3 -rw-rw -r-- 1 igarten Domain Users 173112 May 14 21:35 damBreak.tgz

> tar tzf damBreak.tgz

5 damBreak/system/setFieldsDict

damBreak/system/fvSchemes

7 damBreak/system/decomposeParDict

damBreak/system/fvSolution

9 damBreak/system/controlDict.foam

damBreak/system/controlDict

11 damBreak/constant/polyMesh/owner

damBreak/constant/polyMesh/neighbour

13 ...

The tar-file contains all the necessary directories to run the case
(plus the last time-step)

bgschaid pyFoam 18/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Liberating diskspace with pyFoamClearCase

The system-administrator calls and complains about
the amount of disk-space occupied by the damBreak-case

Ignaz keeps only the first and the last

1 > pyFoamClearCase.py damBreak --keep -last --processors -remove

Everything except the most essential stuff is removed

bgschaid pyFoam 19/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Standing on the shoulders of giants with
pyFoamCloneCase

Ignaz’s boss is enthusiastic, but he needs more results
from the damBreak-case, and he needs them fast

Ignaz gets a basis for his next experiment

1 > pyFoamCloneCase.py damBreak damBreak.parallel

PyFoam WARNING on line 85 of file /home/common/python/PyFoam/Applications/<brk>

<cont> CloneCase.py : Directory does not exist. Creating

Only the essential directories are copied from the damBreak-case
to the new directory damBreak.parallel

bgschaid pyFoam 20/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Preparing a parallel run

Ignaz decomposes

> pyFoamDecompose.py --method=simple --n="2,2,0" --delta=1e-4 damBreak 4

2 PyFoam FATAL ERROR on line 153 of file /home/common/python/PyFoam/Applications/<brk>

<cont> Decomposer.py : Subdomains (2, 2, 0) inconsistent with processor number 4

> pyFoamDecompose.py --method=simple --n="2,2,1" --delta=1e-4 damBreak 4

4 /*---*\

| ========= | |

6 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

....

Ignaz didn’t have to edit the decomposeParDict. PyFoam did it for him

And runs the case in parallel

1 > pyFoamRunner.py --progress --proc=4 interFoam -case damBreak

t = 0.107143

bgschaid pyFoam 21/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Where has all the disk-space gone

Not exactly what Ignaz was looking for

> ll

2 total 0

drwxr -xr-x 9 igarten wheel 306 Sep 9 11:28 damBreakOrig

4 drwxr -xr-x 17 igarten wheel 578 Sep 9 11:33 damBreakParallel

drwxr -xr-x 2 igarten wheel 68 Sep 9 11:37 notACaseIThink

More information

1 > pyFoamListCases.py .

mtime | first - last (nrSteps) name

3 --

Wed Sep 9 11:28:55 2009 | 0 - 0.15 (4) ./ damBreakOrig

5 Wed Sep 9 11:33:13 2009 | 0 - 0 (1) ./ damBreakParallel

Finding the biggest case

1 > pyFoamListCases.py . --parallel --disk --sort=diskusage

mtime | first - last (nrSteps) | procs : pFirst - pLast (nrParallel) | diskusage MB name

3 ---

Wed Sep 9 11:28:55 2009 | 0 - 0.15 (4) | 0 : -1 - -1 (0) | 2 MB ./<brk>

<cont> damBreakOrig

5 Wed Sep 9 11:33:24 2009 | 0 - 0 (1) | 2 : 0 - 0.3 (7) | 3 MB ./<brk>

<cont> damBreakParallel

bgschaid pyFoam 22/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Preparation of boundary conditions

• A text-editor is the most flexible way to edit
boundary-conditions known to mankind

• ... but sometimes it is not the fastest
• especially if there is a lot of boundary conditions

• pyFoamCreateBoundaryConditions creates boundary
conditions bases on the contents of the polyMesh/boundary-
file

• symmetryPlane, wedge etc are set verbatim
• patch and wall are set to zeroGradient if not specified

bgschaid pyFoam 23/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Preparing a case

Ignaz is asked to set the boundary-conditions on a
mesh that the snappyHexMesh-specialist Kasimir
produced (and can’t use OF 1.6 yet)

Ignaz wants to try the motorcycle

1 > cp -r $FOAM_TUTORIALS/oodles/pitzDaily /0 motorBike

> pyFoamCreateBoundaryPatches.py --verbose --clear -unused motorBike /0/U

3 Deleting patch frontAndBack

Deleting patch upperWall

5 Deleting patch inlet

Deleting patch lowerWall

7 Deleting patch outlet

Writing {’type ’: ’zeroGradient ’} to patch maxZ

9 ...

Writing {’type ’: ’zeroGradient ’} to patch motorBike_frame :016- shadow %13

11 Writing {’type ’: ’zeroGradient ’} to patch motorBike_fuel -tank %30

> pyFoamCreateBoundaryPatches.py --overwrite --filter =" motorBike .+" --<brk>

<cont> default ="{’type ’:’fixedValue ’,’value ’:’uniform (0 0 0) ’}" <brk>

<cont> motorBike /0/U

13 > pyFoamCreateBoundaryPatches.py --overwrite --filter ="minX" --default ="{’<brk>

<cont> type ’:’fixedValue ’,’value ’:’uniform (1 0 0) ’}" motorBike /0/U

....
bgschaid pyFoam 24/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Comparing dictionaries

Ignaz’s colleague Isidor modified transportProperties and now gets strange
results.

Ignaz has a hard time recognizing the differences

The original transportProperties

phase1

18 {

transportModel Newtonian;

20 nu nu [0 2 -1 0 0 0 0] 1e-06;

rho rho [1 -3 0 0 0 0 0] 1000;

22 CrossPowerLawCoeffs

{

24 nu0 nu0 [0 2 -1 0 0 0 0] 1e<brk>

<cont> -06;

nuInf nuInf [0 2 -1 0 0 0 0] <brk>

<cont> 1e-06;

26 m m [0 0 1 0 0 0 0] 1;

n n [0 0 0 0 0 0 0] 0;

28 }

BirdCarreauCoeffs

30 {

nu0 nu0 [0 2 -1 0 0 0 0] <brk>

<cont> 0.0142515;

32 nuInf nuInf [0 2 -1 0 0 0 0] <brk>

<cont> 1e-06;

k k [0 0 1 0 0 0 0] 99.6;

34 n n [0 0 0 0 0 0 0] <brk>

<cont> 0.1003;

}

36 }

Isidor’s transportProperties

17 phase1

{

19 // transportModel Isidor;

transportModel Newtonian;

21 nu nu [0 2 -1 0 0 0 0] 1e-06;

rho rho [1 -3 0 0 0 0 0] 100;

23 CrossPowerLawCoeffs

{

25 nuInf nuInf [0 2 -1 0 0 0 0] <brk>

<cont> 1e-06;

nu0 nu0 [0 2 -1 0 0 0 0] 1e<brk>

<cont> -06;

27 m m [0 0 1 0 0 0 0] 1;

n n [0 0 0 0 0 0 0] 0;

29 }

IsidorModelCoeffs

31 {

alpha 1;

33 }

}

35
phase2

37 {

bgschaid pyFoam 25/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Comparing dictionaries

Ignaz wants to see what Isidor did

bgschaid pyFoam 26/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Updating dictionaries

Ignaz wants to merge his and Isidor’s parameters
interactively

Ignaz is picky about things

bgschaid pyFoam 27/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Excurse: state-files in paraview

• ParaView has the possibility to save the current state of the
Gui with the Save State menu-option

• The state can be loaded with ... Load State

• The location of the data-file is written with the full path
inside of the state-file

• To use a state-file with a different case that path has to be
changed

• For similar cases state-files can be used like this:

1 Prepare a visualization in ParaView with case 1
2 Save the state
3 Use the state-file together with case 2

bgschaid pyFoam 28/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Ignaz prepares a paraview state-file

bgschaid pyFoam 29/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

What the statefile looks like

The hardcoded path on line 3014

3008 </Property >

<Property name="ExtrapolateWalls" id="82. ExtrapolateWalls" <brk>

<cont> number_of_elements="1">

3010 <Element index="0" value="0"/>

<Domain name="bool" id="82. ExtrapolateWalls.bool"/>

3012 </Property >

<Property name="FileName" id="82. FileName" number_of_elements="1">

3014 <Element index="0" value="/opt/Missmarvel/bgschaid/damBreak/<brk>

<cont> damBreak.OpenFOAM"/>

<Domain name="files" id="82. FileName.files"/>

3016 </Property >

<Property name="IncludeSets" id="82. IncludeSets" number_of_elements="<brk>

<cont> 1">

3018 <Element index="0" value="0"/>

<Domain name="bool" id="82. IncludeSets.bool"/>

3020 </Property >

<Property name="IncludeZones" id="82. IncludeZones" number_of_elements<brk>

<cont> ="1">

... of course we can always use a text editor to change this

bgschaid pyFoam 30/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Applying a state-file to a case

Ignaz doesn’t like a different perspective

He types ...

1 > pyFoamPVLoadState.py --state=damBreak.pvsm damBreak

.... and has a feeling of deja vu

bgschaid pyFoam 31/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Making snapshots of a case

Ignaz needs some pictures, but his mouse is broken

He types ...

1 > pyFoamPVSnapshot.py --state -file=damBreak.pvsm --latest -time damBreak

.... and finds this picture on his disk (with the correct case-name):

bgschaid pyFoam 32/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Support for development

• ... there is not much need:
• wmake and friends do most of the necessary automatization for

us

• Sometimes during development more than one version of
OpenFOAMTM is needed

• A shell has to be “spoilt” with the other version
• ... or the default version has to be changed

• Or sometimes one wants to use a different version of
OpenFOAMTM just for testing

bgschaid pyFoam 33/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Using pyFoamExecute and the --foam-option

Ignaz programs his first solver and has some problems
while testing it

Ignaz searches for a bug

1 > wmake ignazFoam

> ignazFoam -case testCase

3 Segmentation Fault

> pyFoamExecute.py --foam =1.5- debug wmake ignazFoam

5 > pyFoamRunner.py --foam =1.5- debug ignazFoam -case testCase

< Very obvious bug is revealed >

7 > xemacs ignazFoam/wrongEqn.H

> pyFoamExecute.py --foam =1.5- debug wmake ignazFoam

9 > pyFoamRunner.py --foam =1.5- debug ignazFoam -case testCase

< starts OK >

11 > wmake ignazFoam

> ignazFoam -case testCase

13 < testCase runs OK >

bgschaid pyFoam 34/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

The actual Library

• The library is the basis for the utilities

• It can be used for your own scripts
• To automate repetitive tasks
• Make multiple utilities/solvers look like one

• Every program using PyFoam has a import PyFoam or a
from PyFoam.SubLib.Module import Class to get the functionality of a class

bgschaid pyFoam 35/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

ParsedParameterFile: the workhorse of PyFoam

• The purpose of this class is the manipulation of
OpenFOAMTM-files

• Files are read and represented in memory as
Python-data-structures and can be manipulated as such

• Dictionaries are Python-dictionaries
• Lists are Python-lists

• The data can be printed in the OpenFOAMTM-syntax
• or written back to the disk

• Compressed files are handled transparently

• The way this class reads data is very flexible, but there are
performance issues when reading large files (for instance field
data with thousands of cells)

bgschaid pyFoam 36/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Reading a dictionary

This abstract example
shows how a
dictionary-file is “seen”
inside a
Python-program

The dictionary
testDict

9 model theModel;

11 patches (inlet

outlet);

13
theModelCoeffs {

15 alpha 0.3;

beta 2 inlet ;

17 }

The Python-code

1 from PyFoam.RunDictionary.<brk>

<cont> ParsedParameterFile import <brk>

<cont> ParsedParameterFile

3 file=ParsedParameterFile("testDict")

5 # none of these should fail

assert file["model"]=="theModel"

7 assert len(file["patches"])==2

assert file["patches"][0]=="inlet"

9 assert file["theModelCoeffs"]["beta"<brk>

<cont>][1]=="inlet"

11 # manipulation is possible

file["theModelCoeffs"]["alpha"]+=1

13 file["newCoeffs"]={"a":1,"b":[2,3,4]}

15 print file

bgschaid pyFoam 37/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Writing dictionaries

• ParsedParameterFile-
objects can be written
back to disk using
writeFile

• They can also be printed
(see example)

• PyFoam tries to preserve

• the order of the
elements

• the comments

but is not always
successful

The output from the previous slide

// -*- C++ -*-

2 // File generated by PyFoam - sorry for the <brk>

<cont> ugliness

4 FoamFile

{

6 version 2.0;

format ascii;

8 class dictionary;

object testDict;

10 }

12 model theModel;

14 patches

(

16 inlet

outlet

18);

20 theModelCoeffs

{

22 alpha 1.3;

beta 2 inlet ;

24 }

26 newCoeffs

{

28 a 1;

b

30 (2 3 4);

}
bgschaid pyFoam 38/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Different turbulence specifications

The specification of turbulence changed from 1.4.1 to 1.5

turbulenceProperties

24
turbulenceModel kEpsilon;

26
turbulence on;

28
laminarCoeffs

30 {

}

32
kEpsilonCoeffs

34 {

Cmu Cmu [0 0 0 0 0 0 0] <brk>

<cont> 0.09;

36 C1 C1 [0 0 0 0 0 0 0] <brk>

<cont> 1.44;

C2 C2 [0 0 0 0 0 0 0] <brk>

<cont> 1.92;

38 alphaEps alphaEps [0 0 0 0 0 <brk>

<cont> 0 0] 0.76923;

}

40
RNGkEpsilonCoeffs

RASProperties

16
RASModel kEpsilon;

18
turbulence on;

20
printCoeffs on;

22
laminarCoeffs

24 {

}

26
kEpsilonCoeffs

28 {

Cmu 0.09;

30 C1 1.44;

C2 1.92;

32 alphaEps 0.76923;

}

bgschaid pyFoam 39/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Using ParsedParameterFile

Ignaz has a lot of old cases from his 1.4.1-days

Ignaz wants to keep using his 1.4.1 turbulence files

from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

2 from PyFoam.Basics.DataStructures import DictProxy

4 turb=ParsedParameterFile("turbulenceProperties")

6 turb["RASModel"]=turb["turbulenceModel"]

del turb["turbulenceModel"]

8 turb["printCoeffs"]="on"

10 for k in turb:

if type(turb[k])== DictProxy:

12 for par in turb[k]:

if len(turb[k][par])==3:

14 turb[k][par]=turb[k][par][2]

16 turb.writeFileAs("RASProperties")

bgschaid pyFoam 40/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

The second workhorse

• The classes based on BasicRunner are used for executing
OpenFOAMTM-applications

• The provide most of the functionality pyFoamRunner is
popular for

bgschaid pyFoam 41/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Using the runner

Ignaz runs with a specific liquid height

#! /usr/bin/python

2 import sys

from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

4 from PyFoam.Execution.UtilityRunner import UtilityRunner

from PyFoam.Execution.BasicRunner import BasicRunner

6 case=sys.argv [1]

height=float(sys.argv [2])

8 width=float(sys.argv [3])

setFields=ParsedParameterFile(case+"/system/setFieldsDict")

10 setFields["regions"][1]["box"][1]=[width ,height ,1]

setFields.writeFile ()

12
sf=UtilityRunner(argv=["setFields","-case",case])

14 sf.start ()

16 BasicRunner(argv=["interFoam","-case",case]).start()

Calling it

> chmod a+x kickTheDam.py

2 > ./ kickTheDam.py damBreak 0.5 0.5

bgschaid pyFoam 42/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Using the utilities from scripts

• A lot of interesting functionality is already implemented in the
utilities

• Sometimes it is easier to re-use than to re-build

• The utilities can be called as classes
• The parameters are specified by a list of strings that resemble

the parameters on the command-line

bgschaid pyFoam 43/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Using the utility classes

Day to day work puts a lot of similar geometries on
Ignazs desk

Ignaz always gets similar geometries

#! /usr/bin/python

2
import sys

4 case=sys.argv [1]

proc=int(sys.argv [2])

6
from PyFoam.Applications.Decomposer import Decomposer

8 from PyFoam.Applications.Runner import Runner

from PyFoam.Applications.PlotRunner import PlotRunner

10
Runner(args=["--clear","blockMesh","-case",case])

12 Runner(args=["setFields","-case",case])

Decomposer(args=[case ,str(proc)])

14 PlotRunner(args=["--proc=%d"%proc ,"--with -all","--progress","interFoam","-<brk>

<cont> case",case])

Runner(args=["reconstructPar","-case",case])

bgschaid pyFoam 44/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Capabilities for paraFoam

• ParaView has to be compiled with Python-support
• The ParaView that is distributed with OpenFOAMTM is

not
• Currently only tested with version 3.4 (the Python-API in

3.6 is different/improved. The next release of PyFoam will
support it)

• The library supports
• Manipulating state-files
• Finding the location of the current case and time-step inside of
Programmable filters and Programmable sources

• Creating new ParaView-sources using the SimpleSources
• They seem to become obsolete with the
paraview.simple-package that comes with 3.6

bgschaid pyFoam 45/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Using the SimpleSources

Ignaz sees a case that gives strange results but is too lazy to
look at the environmentalProperties-file

Ignaz wants to know where down is

1 # Draws a vector in the direction of gravity

3 # To be run using "Tools -> Python Shell -> Run Script" inside of paraFoam

assumes that one OpenFOAM -case is opened

5
from PyFoam.Paraview import readerObject ,caseDirectory

7 from PyFoam.Paraview.SimpleSources import Glyph ,Arrow

9 from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

from os import path

11
ro=readerObject ()

13
env=ParsedParameterFile(path.join(caseDirectory ().constantDir (),"<brk>

<cont> environmentalProperties"))

15 g=env["g"][2]

17 # gly=Glyph(" Gravity",ro.getCenter (),ro.getCenter () +0.5*g*abs(ro.getExtent ())/abs(g))

gly=Arrow("Gravity",ro.getCenter (),ro.getCenter ()+0.5*g*abs(ro.getExtent ())/abs(g))

19
gly.repr.Color =(0,0,0)

bgschaid pyFoam 46/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

What Ignaz sees is strange

bgschaid pyFoam 47/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Overview

• PyFoam has classes that help to work with cases
• They reside in the RunDictionary-submodule

• Some of the more important classes are:

SolutionDirectory Amongst other things a list of
TimeDirectory

TimeDirectory A collection of SolutionFiles
SolutionFile Representation of a field that is not fully

parsed

bgschaid pyFoam 48/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Analyzing a SolutionDirectory

Ignaz wonders whether dimensions can change during a run

He wants to check all the files

import sys

2 from PyFoam.RunDictionary.SolutionDirectory import SolutionDirectory

sol=SolutionDirectory(sys.argv [1])

4 for t in sol:

print "t = ",t.baseName ()

6 for f in t.getFiles ():

print " ",f,":",t[f]. getDimensionString ()

Relief. Everything OK

1 > python ListFields.py .

t = 0

3 U : m s^-1

gamma : 1

5 gamma.org : 1

pd : kg m^-1 s^-2

7 t = 0.05

U : m s^-1

9 gamma : 1

p : kg m^-1 s^-2

11 pd : kg m^-1 s^-2

phi : m^3 s^-1

bgschaid pyFoam 49/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

How to get further documentation

• The sources contain a lot of documentation

• A more human-readable form of the documentation can be
generated using the Epydoc-utility

• Html-files with nice pictures
• Is included with the tarball distributed on the Wiki

• Another wicked cool way to get to know PyFoam (or any
other Python-package) interactively is IPython

• Tab-completion for imports, method-names,
• Better help
•

bgschaid pyFoam 50/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Bringing it all back home

Ignaz does a parameter-variation

from PyFoam.Execution.UtilityRunner import UtilityRunner

2 from PyFoam.Execution.BasicRunner import BasicRunner

from PyFoam.RunDictionary.SolutionDirectory import SolutionDirectory

4 from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

from PyFoam.Applications.PVSnapshot import PVSnapshot

6
from os import path

8
orig=SolutionDirectory(path.expandvars("$FOAM_TUTORIALS/interFoam/damBreak"),

10 archive=None ,

paraviewLink=False)

12
for density in [10 ,1000 ,10000]:

14 print "Density:",density

case=orig.cloneCase("damBreakDensity%f" % density).name

16 UtilityRunner(argv=["blockMesh","-case",case],silent=True).start()

UtilityRunner(argv=["setFields","-case",case],silent=True).start()

18 transport=ParsedParameterFile(path.join(case ,

"constant",

20 "transportProperties"))

transport["phase1"]["rho"][2]= density

22 transport.writeFile ()

BasicRunner(argv=["interFoam","-case",case]).start()

24 PVSnapshot(args=["--state=damBreakState.pvsm","--all",case])

bgschaid pyFoam 51/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Results of the variation

bgschaid pyFoam 52/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Configuring PyFoam

• Certain aspects of PyFoam can be modified using
configuration files

• This can happen in three locations (lowest number wins):

1 User-specific in ~/.pyFoam/pyfoamrc
2 System-wide in /etc/pyFoam/pyfoamrc
3 Hardcoded in the library

bgschaid pyFoam 53/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Getting the current configuration

Ignaz wants to see the settings

1 > pyFoamDumpConfiguration.py

[Paths]

3 python: /usr/bin/python

bash: /bin/bash

5
[CommandOptionDefaults]

7 sortlistcases: mtime

9 [Logging]

default: INFO

11 server: INFO

13 [Network]

searchservers: 192.168.42.0/24 ,192.168.43.0/24

15 nrserverports: 100

socketretries: 10

17 sockettimeout: 1.

startserverport: 18000

19 portwait: 1.

21 [Execution]

controldictrestorewait: 60.

23
[ClusterJob]

25 path: /opt/openmpi/bin

ldpath: /opt/openmpi/lib

27 usefoammpi: ["1.5"]

bgschaid pyFoam 54/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Changing settings

Ignaz wants to use the pyFoamNetList (see below)
in his network but the server has a different IP-address
than the one hard-coded in the library

Ignaz has a different Meta-Server

1 [Metaserver]

ip: 10.127.66.66

3
[Network]

5 searchservers: 10.127.0.0/16

He only has to distribute this to /etc/pyFoam/pyfoamrc to all
machines in his network

bgschaid pyFoam 55/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Support for execution on a cluster

• PyFoam supports using Python-scripts as batch jobs in the
Sun Grid Engine-queue-manager

• Other queue-managers would be possible
• Not implemented because there was no need until now for this

• The support is implemented in a class ClusterJob
• Different methods can be overwritten to change the behavior

during different phases of the job

In the following example the lines starting with #$ are options for
the Sun Grid Engine

bgschaid pyFoam 56/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Executing cluster-scripts

Ignaz’s simple script

1 #!/usr/bin/python

#

3 #$ -cwd

#$ -j y

5 #$ -S /opt/rocks/bin/python

#$ -m be

7 #

9 import sys ,os

from os import path

11
from PyFoam.Infrastructure.ClusterJob import SolverJob

13 from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

15 visc=float(sys.argv [1])

name="damBreak.visc_%g" % visc

17
class breakIt(SolverJob):

19 def __init__(self):

SolverJob.__init__(self ,

21 name+".run",

"interFoam",

23 template="damBreak.template",

foamVersion="1.5")

25
def setup(self ,parameters):

27 self.foamRun("blockMesh")

self.foamRun("setFields")

29 transport=ParsedParameterFile(path.join(self.casedir (),

"constant",

31 "transportProperties"))

transport["phase1"]["nu"][2]= visc

33 transport.writeFile ()

35 breakIt ().doIt()

bgschaid pyFoam 57/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

What the script does

1 Copy a template case to the actual case

2 Prepare the case using utilities

3 Modify the case

4 If it is a parallel run decompose the case
• Automatically knows the number of processors

5 Execute the solver

6 Reconstruct the case if it is a parallel run

bgschaid pyFoam 58/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Running the script

First Ignaz trys it out on his local machine

> pyFoamClusterTester.py --proc=2 runDambreak.py 1e-4

2 Clearing out old the environment

Executing runDambreak.py 1e-4

4

Ignaz breaks it on a single processor

> qsub runDambreak.py 1e-4

2 Your job 7663 (" runDambreak.py 1e-4") has been submitted

Ignaz breaks the dam on 128 CPU’s

> qsub -pe mpi 128 runDambreak.py 1e-5

2 Your job 7664 (" runDambreak.py 1e-5") has been submitted

bgschaid pyFoam 59/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Every script should have a server

• The Runner-classes automatically start a small network-server

• This server monitors the progress of the application
• Also writes to the case to control it

• for instance to kill the calculation

• Server-processes automatically choose their port so that
multiple servers can run on one machine

• The server registers itself at a separate server called the
Meta-Server

• The Meta-Server is unique in the network and keeps track of
all the runs in the network

• Processes can be listed with pyFoamNetList

• Processes (and the Meta-Server) can be controlled using
pyFoamNetShell

bgschaid pyFoam 60/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Architecture overview

bgschaid pyFoam 61/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Finding the runs in the network

Ignaz wants to know when his runs will finish

> pyFoamNetList.py --time --user=igarten

2 Hostname | Port | User | Command Line

4 compute -0-3. local | 18002 | igarten | interFoam -case damBreak1.restart

Time: 0.0888 Timerange: [0.0798 , 0.16] Mesh created: 0.0798 -> Progress: 11.22%<brk>

<cont> (Total: 11.22%)

6 Started: 2009-May -14 11:08 Walltime: 35630.4s Estimated End: 2009-May -18 03:20

8 compute -0-2. local | 18001 | igarten | interFoam -case damBreak2.restart

Time: 0.09066 Timerange: [0.0798 , 0.16] Mesh created: 0.0798 -> Progress: <brk>

<cont> 13.54% (Total: 13.54%)

10 Started: 2009-May -14 09:09 Walltime: 42789.4s Estimated End: 2009-May -18 00:56

12 compute -0-2. local | 18000 | igarten | interFoam -case damBreak3.restart

Time: 0.09123 Timerange: [0.0798 , 0.16] Mesh created: 0.0798 -> Progress: <brk>

<cont> 14.25% (Total: 14.25%)

14 Started: 2009-May -14 09:02 Walltime: 43211.8s Estimated End: 2009-May -17 21:15

16 compute -0-2. local | 18003 | igarten | interFoam -case damBreak.clean

Time: 1.5 Timerange: [0 , 7.4] Mesh created: 0 -> Progress: 20.27% (Total: <brk>

<cont> 20.27%)

18 Started: 2009-May -14 18:47 Walltime: 8107.17s Estimated End: 2009-May -15 05:54

bgschaid pyFoam 62/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Controlling runs

Ignaz has a look and stops (with writing)

1 > pyFoamNetShell.py compute -0-3. local 18002

Connected to server compute -0-3. local on port 18002

3 42 available methods found

PFNET> help

5 For help on a method type ’help <method >’

Available methods are:

7 actualCommandLine

argv

9 ...

wallTime

11 write

PFNET> help stop

13 Method : stop

Signature : signatures not supported

15 Stops the run gracefully (after writing the last time -step to disk)

PFNET> time()

17 0.08889

PFNET> stop()

19 PFNET>

Goodbye

bgschaid pyFoam 63/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Unmentioned scripts

Three interesting applications that were not menitoned are

pyFoamBench Utility to run benchmarks that are specified in a
parameter-file and compares them with a baseline

pyFoamCaseBuilder Builds cases from a template, a Xml-file
and a small number of user-inputs

pyFoamComparator Do systematic parameter-variations

pyFoamDisplayBlockMesh Displays the data from a
blockMeshDict graphically using the Vtk

... and a number of smaller utilities

bgschaid pyFoam 64/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Stuff that needs work

PyFoam is a permanent work in progress, but stuff that needs to
be improved is

• Improvement of the ParaView-support
• 3.6 seems to be an improvement in itself

• Speed of ParsedParameterFile for large files

• Improvement of the network-structure
• Fault-tolerance
• Web-interface

• ... and a number of smaller issues

bgschaid pyFoam 65/66

Introduction
The Utilities

The library
Advanced topics

Conclusion

Suggestions/Questions

Thanks for listening
• Questions?

• Suggestions for the library?

bgschaid pyFoam 66/66

	Introduction
	Overview
	Python
	Design and Conventions

	The Utilities
	Executing solvers
	Working with cases
	Working with dictionaries
	Paraview
	Development support

	The library
	ParsedParameterFile
	The Runner-classes
	The Application classes
	Paraview/paraFoam
	Structure of cases
	Documentation and conclusion

	Advanced topics
	Configuration files
	Cluster support
	The PyFoam-network
	Other

	Conclusion

