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Aim of this presentation

• This presentation wants to give an overview of PyFoam
• not everything will be mentioned (but the most important

concepts will be talked about)

• The two main parts of the presentation are

1 The utilities (the more popular part of PyFoam)
2 The library (the interesting part of PyFoam)
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Introducing Ignaz Gartengschirrl

Ignaz Gartengschirrl is a
CFD-engineer specialized in
calculating the infamous
damBreak-case. We will witness
his experiences with PyFoam
here.
We may call him Ignaz

Ignaz writes on the shell

1 > date

Fri May 15 01:56:12 CEST 2009

Ignaz’s Python-code

sum=0

2 for v in [7 ,13 ,42]:

sum+=v

4 print "The sum is",sum

# this is a long line that will be <brk>

<cont> continued in the next line

Ignaz edits a file

1 fooCoeffs {

bar 23;

3 lst ( inlet outlet );

}
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Motivation

How it started:

• The official Version:
• OpenFOAMTM is command-line oriented
• OpenFOAMTM-files have a simple, structured syntax

These two properties make it a very good candidate for
automatizing. PyFoam tries to help here

• The real version:
I wanted to watch the residuals during a run

Both are true
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What is Python

• Is a scripting language
• No compilation required

• Is object-oriented

• Comes batteries included : has a large standard-library for
many common tasks

• Non essential parts (like regular expressions) were moved to
the library

• Widely used
• Pre-installed on most Linux-systems because many system

tools (installers for instance) use it
• Becomes scripting language of choice for a number of

programs (amongst others the post-processors ParaView
and Visit and the pre-processor Salome)
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Why Python

... and not (for instance) Perl

• It is named after Monty Python. Perl and Ruby are only
named after jewelry

That should be reason enough. But there are other reasons:

• It has a very simple and clear syntax

• It is reasonably fast for a scripting language (OK. Perl is a
bit faster)

and the stuff from the previous slide

• Widely used

• Batteries included
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3 things you have to know about Python

... to understand the programming examples

1 Indentation does the same thing { and } do for C++

2 [] signifies a list (which is an array)

3 {} is a dictionary (whose elements are accessed with [key])

4 self is the same as this in C++ (The object itself)

Aeh. The 4 things to know about Python are ....
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Basic design considerations

• No compiled extensions

Plus More portable
Minus Performance problem when processing large

dictionaries

• Controls OpenFOAMTM from the outside
• Writes dictionaries and processes the output

• If possible only the standard-Python-libraries are used
• Eases deployment
• Exceptions are the library for parsing and for GnuPlot. They

are included in the distribution

• Basic classes are being unit-tested

• Currently it works with Python-versions from 2.3 to 2.6
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Conventions

• For utilities:
• Utility names always start with pyFoam
• If there is an OpenFOAMTM-utility in the argument list all

options after that utility are ignored by PyFoam
• Options for PyFoam start with -- and there is a complete

listing to be had with --help

• For the library
• Classes are organized according to their purpose under the

base name PyFoam
• Names try to by expressive enough but there is documentation

for most of the classes
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Someone is always there for you: --help

Ignaz wants to find out what pyFoamClearCase.py does

> pyFoamClearCase.py --help

2 Usage

=====

4 pyFoamClearCase.py <caseDirectory >

6 Removes all timesteps but the first from a case -directory. Also removes <brk>

<cont> other

data that is generated by sovers/utilities/PyFoam

8
Options

10 =======

--version show program ’s version number and exit

12 --help , -h show this help message and exit

14 Default

-------

16 Options common to all PyFoam -applications

....

18 What

----

20 Define what should be cleared

22 --after=AFTER Only remove timesteps after this time

--processors -remove Remove the processor directories

24 --vtk -keep Keep the VTK directory

--no-pyfoam Keep the PyFoam -specific directories and logfiles

26 --keep -last Keep the data from the last time -step

--keep -regular Keep all the timesteps
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What the pyFoamRunner does

• Starts a solver

• Captures the output of the solver and
• sends it to terminal

• only outputs the time if started with --progress

• writes it to a logfile
• analyzes it and writes data (residuals etc) to a directory

• If called with --proc=N makes sure that the run is parallel
• Prepends mpirun or similar
• Appends --parallel

• Starts a server process that allows control of the run
• More on this later ...

• And a number of other things (did I mention --help?)
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Using it

Ignaz wants to run the damBreak anew

1 > pyFoamRunner.py --clear interFoam -case damBreak

Clearing out old timesteps ....

3 /*---------------------------------------------------------------------------*\

| ========= | |

5 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5 |

7 | \\ / A nd | Web: http ://www.OpenFOAM.org |

| \\/ M anipulation | |

9 \*---------------------------------------------------------------------------*/

Exec : interFoam -case damBreak

11 Date : May 14 2009

...

• Before running PyFoam removes all time-steps except the first one
• A log-file PyFoamRunner.interFoam.logfile is found in the case-directory
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The plotter utilities

• There are two flavors

pyFoamPlotRunner Similar to pyFoamRunner
pyFoamPlotWatcher Gets the log-file of a run (it may be still

running)

who both plot the data extracted from the output
• Data plotted is

Standard stuff Residuals, continuity, time-steps ...
• Can be switched on and off using --with-options

Application specific stuff Can be specified on the command line or
in a file

• Needs a regular expression to identify the data
• If a file customRegexp is found in the case or near the

log-file it is automatically used
• The next version of PyFoam will have a more foamy

syntax for customRegexp
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Plotting graphs

Ignaz prepares a customRegexp

{"expr": "Courant Number mean: (%f%) max: (%f%)","name":"My Courant","<brk>

<cont> titles":["Mean","Max"]}

2 {"expr": "Liquid phase volume fraction = .+  Min\(gamma \) = -(%f%)  Max","<brk>

<cont> name":"Negative fraction","logscale":True}

Ignaz runs the case again

> pyFoamPlotRunner.py --clear interFoam -case damBreak

2 Reading regular expressions from damBreak/customRegexp

Clearing out old timesteps ....

4 .....

Looking at past glory: Ignaz plots a logfile

> pyFoamPlotWatcher.py --progress damBreak/PyFoamRunner.interFoam.logfile

2 Reading regular expressions from damBreak/customRegexp

t = 1
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What Ignaz sees
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Caring for cases

• Cases in OpenFOAMTM are organized as collections files
and directories

Advantage Easy to handle using the usual system-tools
Disadvantage Hard to handle

• Try removing all timesteps except 0 and 0.5
with a single rm

• PyFoam offers a number of utilities for common tasks

• The OpenFOAMTM-files are essentially text-files
• PyFoam has tools to manipulate them
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Collecting data with pyFoamPackCase

Ignaz’s boss wants to know how work on the
damBreak is going

Ignaz sends the results to his boss

1 > pyFoamPackCase.py damBreak --last

> ll *.tgz

3 -rw-rw -r-- 1 igarten Domain Users 173112 May 14 21:35 damBreak.tgz

> tar tzf damBreak.tgz

5 damBreak/system/setFieldsDict

damBreak/system/fvSchemes

7 damBreak/system/decomposeParDict

damBreak/system/fvSolution

9 damBreak/system/controlDict.foam

damBreak/system/controlDict

11 damBreak/constant/polyMesh/owner

damBreak/constant/polyMesh/neighbour

13 ...

The tar-file contains all the necessary directories to run the case
(plus the last time-step)
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Liberating diskspace with pyFoamClearCase

The system-administrator calls and complains about
the amount of disk-space occupied by the damBreak-case

Ignaz keeps only the first and the last

1 > pyFoamClearCase.py damBreak --keep -last --processors -remove

Everything except the most essential stuff is removed
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Standing on the shoulders of giants with
pyFoamCloneCase

Ignaz’s boss is enthusiastic, but he needs more results
from the damBreak-case, and he needs them fast

Ignaz gets a basis for his next experiment

1 > pyFoamCloneCase.py damBreak damBreak.parallel

PyFoam WARNING on line 85 of file /home/common/python/PyFoam/Applications/<brk>

<cont> CloneCase.py : Directory does not exist. Creating

Only the essential directories are copied from the damBreak-case
to the new directory damBreak.parallel
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Preparing a parallel run

Ignaz decomposes

> pyFoamDecompose.py --method=simple --n="2,2,0" --delta=1e-4 damBreak 4

2 PyFoam FATAL ERROR on line 153 of file /home/common/python/PyFoam/Applications/<brk>

<cont> Decomposer.py : Subdomains (2, 2, 0) inconsistent with processor number 4

> pyFoamDecompose.py --method=simple --n="2,2,1" --delta=1e-4 damBreak 4

4 /*---------------------------------------------------------------------------*\

| ========= | |

6 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

....

Ignaz didn’t have to edit the decomposeParDict. PyFoam did it for him

And runs the case in parallel

1 > pyFoamRunner.py --progress --proc=4 interFoam -case damBreak

t = 0.107143
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Where has all the disk-space gone

Not exactly what Ignaz was looking for

> ll

2 total 0

drwxr -xr-x 9 igarten wheel 306 Sep 9 11:28 damBreakOrig

4 drwxr -xr-x 17 igarten wheel 578 Sep 9 11:33 damBreakParallel

drwxr -xr-x 2 igarten wheel 68 Sep 9 11:37 notACaseIThink

More information

1 > pyFoamListCases.py .

mtime | first - last (nrSteps) name

3 ------------------------------------------------------

Wed Sep 9 11:28:55 2009 | 0 - 0.15 ( 4) ./ damBreakOrig

5 Wed Sep 9 11:33:13 2009 | 0 - 0 ( 1) ./ damBreakParallel

Finding the biggest case

1 > pyFoamListCases.py . --parallel --disk --sort=diskusage

mtime | first - last (nrSteps) | procs : pFirst - pLast (nrParallel) | diskusage MB name

3 -----------------------------------------------------------------------------------------------------------

Wed Sep 9 11:28:55 2009 | 0 - 0.15 ( 4) | 0 : -1 - -1 ( 0) | 2 MB ./<brk>

<cont> damBreakOrig

5 Wed Sep 9 11:33:24 2009 | 0 - 0 ( 1) | 2 : 0 - 0.3 ( 7) | 3 MB ./<brk>

<cont> damBreakParallel
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Preparation of boundary conditions

• A text-editor is the most flexible way to edit
boundary-conditions known to mankind

• ... but sometimes it is not the fastest
• especially if there is a lot of boundary conditions

• pyFoamCreateBoundaryConditions creates boundary
conditions bases on the contents of the polyMesh/boundary-
file

• symmetryPlane, wedge etc are set verbatim
• patch and wall are set to zeroGradient if not specified
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Preparing a case

Ignaz is asked to set the boundary-conditions on a
mesh that the snappyHexMesh-specialist Kasimir
produced (and can’t use OF 1.6 yet)

Ignaz wants to try the motorcycle

1 > cp -r $FOAM_TUTORIALS/oodles/pitzDaily /0 motorBike

> pyFoamCreateBoundaryPatches.py --verbose --clear -unused motorBike /0/U

3 Deleting patch frontAndBack

Deleting patch upperWall

5 Deleting patch inlet

Deleting patch lowerWall

7 Deleting patch outlet

Writing {’type ’: ’zeroGradient ’} to patch maxZ

9 ...

Writing {’type ’: ’zeroGradient ’} to patch motorBike_frame :016- shadow %13

11 Writing {’type ’: ’zeroGradient ’} to patch motorBike_fuel -tank %30

> pyFoamCreateBoundaryPatches.py --overwrite --filter =" motorBike .+" --<brk>

<cont> default ="{’type ’:’fixedValue ’,’value ’:’uniform (0 0 0) ’}" <brk>

<cont> motorBike /0/U

13 > pyFoamCreateBoundaryPatches.py --overwrite --filter ="minX" --default ="{’<brk>

<cont> type ’:’fixedValue ’,’value ’:’uniform (1 0 0) ’}" motorBike /0/U

....
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Comparing dictionaries

Ignaz’s colleague Isidor modified transportProperties and now gets strange
results.

Ignaz has a hard time recognizing the differences

The original transportProperties

phase1

18 {

transportModel Newtonian;

20 nu nu [0 2 -1 0 0 0 0] 1e-06;

rho rho [1 -3 0 0 0 0 0] 1000;

22 CrossPowerLawCoeffs

{

24 nu0 nu0 [0 2 -1 0 0 0 0] 1e<brk>

<cont> -06;

nuInf nuInf [0 2 -1 0 0 0 0] <brk>

<cont> 1e-06;

26 m m [0 0 1 0 0 0 0] 1;

n n [0 0 0 0 0 0 0] 0;

28 }

BirdCarreauCoeffs

30 {

nu0 nu0 [0 2 -1 0 0 0 0] <brk>

<cont> 0.0142515;

32 nuInf nuInf [0 2 -1 0 0 0 0] <brk>

<cont> 1e-06;

k k [0 0 1 0 0 0 0] 99.6;

34 n n [0 0 0 0 0 0 0] <brk>

<cont> 0.1003;

}

36 }

Isidor’s transportProperties

17 phase1

{

19 // transportModel Isidor;

transportModel Newtonian;

21 nu nu [0 2 -1 0 0 0 0] 1e-06;

rho rho [1 -3 0 0 0 0 0] 100;

23 CrossPowerLawCoeffs

{

25 nuInf nuInf [0 2 -1 0 0 0 0] <brk>

<cont> 1e-06;

nu0 nu0 [0 2 -1 0 0 0 0] 1e<brk>

<cont> -06;

27 m m [0 0 1 0 0 0 0] 1;

n n [0 0 0 0 0 0 0] 0;

29 }

IsidorModelCoeffs

31 {

alpha 1;

33 }

}

35
phase2

37 {
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Comparing dictionaries

Ignaz wants to see what Isidor did
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Updating dictionaries

Ignaz wants to merge his and Isidor’s parameters
interactively

Ignaz is picky about things
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Excurse: state-files in paraview

• ParaView has the possibility to save the current state of the
Gui with the Save State menu-option

• The state can be loaded with ... Load State

• The location of the data-file is written with the full path
inside of the state-file

• To use a state-file with a different case that path has to be
changed

• For similar cases state-files can be used like this:

1 Prepare a visualization in ParaView with case 1
2 Save the state
3 Use the state-file together with case 2
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Ignaz prepares a paraview state-file
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What the statefile looks like

The hardcoded path on line 3014

3008 </Property >

<Property name="ExtrapolateWalls" id="82. ExtrapolateWalls" <brk>

<cont> number_of_elements="1">

3010 <Element index="0" value="0"/>

<Domain name="bool" id="82. ExtrapolateWalls.bool"/>

3012 </Property >

<Property name="FileName" id="82. FileName" number_of_elements="1">

3014 <Element index="0" value="/opt/Missmarvel/bgschaid/damBreak/<brk>

<cont> damBreak.OpenFOAM"/>

<Domain name="files" id="82. FileName.files"/>

3016 </Property >

<Property name="IncludeSets" id="82. IncludeSets" number_of_elements="<brk>

<cont> 1">

3018 <Element index="0" value="0"/>

<Domain name="bool" id="82. IncludeSets.bool"/>

3020 </Property >

<Property name="IncludeZones" id="82. IncludeZones" number_of_elements<brk>

<cont> ="1">

... of course we can always use a text editor to change this
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Applying a state-file to a case

Ignaz doesn’t like a different perspective

He types ...

1 > pyFoamPVLoadState.py --state=damBreak.pvsm damBreak

.... and has a feeling of deja vu
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Making snapshots of a case

Ignaz needs some pictures, but his mouse is broken

He types ...

1 > pyFoamPVSnapshot.py --state -file=damBreak.pvsm --latest -time damBreak

.... and finds this picture on his disk (with the correct case-name):

bgschaid pyFoam 32/66



Introduction
The Utilities

The library
Advanced topics

Conclusion

Executing solvers
Working with cases
Working with dictionaries
Paraview
Development support

Support for development

• ... there is not much need:
• wmake and friends do most of the necessary automatization for

us

• Sometimes during development more than one version of
OpenFOAMTM is needed

• A shell has to be “spoilt” with the other version
• ... or the default version has to be changed

• Or sometimes one wants to use a different version of
OpenFOAMTM just for testing
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Using pyFoamExecute and the --foam-option

Ignaz programs his first solver and has some problems
while testing it

Ignaz searches for a bug

1 > wmake ignazFoam

> ignazFoam -case testCase

3 Segmentation Fault

> pyFoamExecute.py --foam =1.5- debug wmake ignazFoam

5 > pyFoamRunner.py --foam =1.5- debug ignazFoam -case testCase

< Very obvious bug is revealed >

7 > xemacs ignazFoam/wrongEqn.H

> pyFoamExecute.py --foam =1.5- debug wmake ignazFoam

9 > pyFoamRunner.py --foam =1.5- debug ignazFoam -case testCase

< starts OK >

11 > wmake ignazFoam

> ignazFoam -case testCase

13 < testCase runs OK >
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The actual Library

• The library is the basis for the utilities

• It can be used for your own scripts
• To automate repetitive tasks
• Make multiple utilities/solvers look like one

• Every program using PyFoam has a import PyFoam or a
from PyFoam.SubLib.Module import Class to get the functionality of a class
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ParsedParameterFile: the workhorse of PyFoam

• The purpose of this class is the manipulation of
OpenFOAMTM-files

• Files are read and represented in memory as
Python-data-structures and can be manipulated as such

• Dictionaries are Python-dictionaries
• Lists are Python-lists

• The data can be printed in the OpenFOAMTM-syntax
• or written back to the disk

• Compressed files are handled transparently

• The way this class reads data is very flexible, but there are
performance issues when reading large files (for instance field
data with thousands of cells)
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Reading a dictionary

This abstract example
shows how a
dictionary-file is “seen”
inside a
Python-program

The dictionary
testDict

9 model theModel;

11 patches ( inlet

outlet );

13
theModelCoeffs {

15 alpha 0.3;

beta 2 inlet ;

17 }

The Python-code

1 from PyFoam.RunDictionary.<brk>

<cont> ParsedParameterFile import <brk>

<cont> ParsedParameterFile

3 file=ParsedParameterFile("testDict")

5 # none of these should fail

assert file["model"]=="theModel"

7 assert len(file["patches"])==2

assert file["patches"][0]=="inlet"

9 assert file["theModelCoeffs"]["beta"<brk>

<cont> ][1]=="inlet"

11 # manipulation is possible

file["theModelCoeffs"]["alpha"]+=1

13 file["newCoeffs"]={"a":1,"b":[2,3,4]}

15 print file

bgschaid pyFoam 37/66



Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Writing dictionaries

• ParsedParameterFile-
objects can be written
back to disk using
writeFile

• They can also be printed
(see example)

• PyFoam tries to preserve

• the order of the
elements

• the comments

but is not always
successful

The output from the previous slide

// -*- C++ -*-

2 // File generated by PyFoam - sorry for the <brk>

<cont> ugliness

4 FoamFile

{

6 version 2.0;

format ascii;

8 class dictionary;

object testDict;

10 }

12 model theModel;

14 patches

(

16 inlet

outlet

18 );

20 theModelCoeffs

{

22 alpha 1.3;

beta 2 inlet ;

24 }

26 newCoeffs

{

28 a 1;

b

30 (2 3 4);

}
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Different turbulence specifications

The specification of turbulence changed from 1.4.1 to 1.5

turbulenceProperties

24
turbulenceModel kEpsilon;

26
turbulence on;

28
laminarCoeffs

30 {

}

32
kEpsilonCoeffs

34 {

Cmu Cmu [0 0 0 0 0 0 0] <brk>

<cont> 0.09;

36 C1 C1 [0 0 0 0 0 0 0] <brk>

<cont> 1.44;

C2 C2 [0 0 0 0 0 0 0] <brk>

<cont> 1.92;

38 alphaEps alphaEps [0 0 0 0 0 <brk>

<cont> 0 0] 0.76923;

}

40
RNGkEpsilonCoeffs

RASProperties

16
RASModel kEpsilon;

18
turbulence on;

20
printCoeffs on;

22
laminarCoeffs

24 {

}

26
kEpsilonCoeffs

28 {

Cmu 0.09;

30 C1 1.44;

C2 1.92;

32 alphaEps 0.76923;

}
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Using ParsedParameterFile

Ignaz has a lot of old cases from his 1.4.1-days

Ignaz wants to keep using his 1.4.1 turbulence files

from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

2 from PyFoam.Basics.DataStructures import DictProxy

4 turb=ParsedParameterFile("turbulenceProperties")

6 turb["RASModel"]=turb["turbulenceModel"]

del turb["turbulenceModel"]

8 turb["printCoeffs"]="on"

10 for k in turb:

if type(turb[k])== DictProxy:

12 for par in turb[k]:

if len(turb[k][par])==3:

14 turb[k][par]=turb[k][par ][2]

16 turb.writeFileAs("RASProperties")
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The second workhorse

• The classes based on BasicRunner are used for executing
OpenFOAMTM-applications

• The provide most of the functionality pyFoamRunner is
popular for
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Using the runner

Ignaz runs with a specific liquid height

#! /usr/bin/python

2 import sys

from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

4 from PyFoam.Execution.UtilityRunner import UtilityRunner

from PyFoam.Execution.BasicRunner import BasicRunner

6 case=sys.argv [1]

height=float(sys.argv [2])

8 width=float(sys.argv [3])

setFields=ParsedParameterFile(case+"/system/setFieldsDict")

10 setFields["regions"][1]["box"][1]=[ width ,height ,1]

setFields.writeFile ()

12
sf=UtilityRunner(argv=["setFields","-case",case])

14 sf.start ()

16 BasicRunner(argv=["interFoam","-case",case]).start()

Calling it

> chmod a+x kickTheDam.py

2 > ./ kickTheDam.py damBreak 0.5 0.5

bgschaid pyFoam 42/66



Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Using the utilities from scripts

• A lot of interesting functionality is already implemented in the
utilities

• Sometimes it is easier to re-use than to re-build

• The utilities can be called as classes
• The parameters are specified by a list of strings that resemble

the parameters on the command-line
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Using the utility classes

Day to day work puts a lot of similar geometries on
Ignazs desk

Ignaz always gets similar geometries

#! /usr/bin/python

2
import sys

4 case=sys.argv [1]

proc=int(sys.argv [2])

6
from PyFoam.Applications.Decomposer import Decomposer

8 from PyFoam.Applications.Runner import Runner

from PyFoam.Applications.PlotRunner import PlotRunner

10
Runner(args=["--clear","blockMesh","-case",case])

12 Runner(args=["setFields","-case",case])

Decomposer(args=[case ,str(proc)])

14 PlotRunner(args=["--proc=%d"%proc ,"--with -all","--progress","interFoam","-<brk>

<cont> case",case])

Runner(args=["reconstructPar","-case",case])
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Capabilities for paraFoam

• ParaView has to be compiled with Python-support
• The ParaView that is distributed with OpenFOAMTM is

not
• Currently only tested with version 3.4 (the Python-API in

3.6 is different/improved. The next release of PyFoam will
support it)

• The library supports
• Manipulating state-files
• Finding the location of the current case and time-step inside of
Programmable filters and Programmable sources

• Creating new ParaView-sources using the SimpleSources
• They seem to become obsolete with the
paraview.simple-package that comes with 3.6
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Using the SimpleSources

Ignaz sees a case that gives strange results but is too lazy to
look at the environmentalProperties-file

Ignaz wants to know where down is

1 # Draws a vector in the direction of gravity

3 # To be run using "Tools -> Python Shell -> Run Script" inside of paraFoam

# assumes that one OpenFOAM -case is opened

5
from PyFoam.Paraview import readerObject ,caseDirectory

7 from PyFoam.Paraview.SimpleSources import Glyph ,Arrow

9 from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

from os import path

11
ro=readerObject ()

13
env=ParsedParameterFile(path.join(caseDirectory ().constantDir (),"<brk>

<cont> environmentalProperties"))

15 g=env["g"][2]

17 # gly=Glyph(" Gravity",ro.getCenter (),ro.getCenter () +0.5*g*abs(ro.getExtent ())/abs(g))

gly=Arrow("Gravity",ro.getCenter (),ro.getCenter ()+0.5*g*abs(ro.getExtent ())/abs(g))

19
gly.repr.Color =(0,0,0)
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What Ignaz sees .... is strange
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Overview

• PyFoam has classes that help to work with cases
• They reside in the RunDictionary-submodule

• Some of the more important classes are:

SolutionDirectory Amongst other things a list of
TimeDirectory

TimeDirectory A collection of SolutionFiles
SolutionFile Representation of a field that is not fully

parsed
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Analyzing a SolutionDirectory

Ignaz wonders whether dimensions can change during a run

He wants to check all the files

import sys

2 from PyFoam.RunDictionary.SolutionDirectory import SolutionDirectory

sol=SolutionDirectory(sys.argv [1])

4 for t in sol:

print "t = ",t.baseName ()

6 for f in t.getFiles ():

print " ",f,":",t[f]. getDimensionString ()

Relief. Everything OK

1 > python ListFields.py .

t = 0

3 U : m s^-1

gamma : 1

5 gamma.org : 1

pd : kg m^-1 s^-2

7 t = 0.05

U : m s^-1

9 gamma : 1

p : kg m^-1 s^-2

11 pd : kg m^-1 s^-2

phi : m^3 s^-1
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How to get further documentation

• The sources contain a lot of documentation

• A more human-readable form of the documentation can be
generated using the Epydoc-utility

• Html-files with nice pictures
• Is included with the tarball distributed on the Wiki

• Another wicked cool way to get to know PyFoam (or any
other Python-package) interactively is IPython

• Tab-completion for imports, method-names, ....
• Better help
• ....
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Bringing it all back home

Ignaz does a parameter-variation

from PyFoam.Execution.UtilityRunner import UtilityRunner

2 from PyFoam.Execution.BasicRunner import BasicRunner

from PyFoam.RunDictionary.SolutionDirectory import SolutionDirectory

4 from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

from PyFoam.Applications.PVSnapshot import PVSnapshot

6
from os import path

8
orig=SolutionDirectory(path.expandvars("$FOAM_TUTORIALS/interFoam/damBreak"),

10 archive=None ,

paraviewLink=False)

12
for density in [10 ,1000 ,10000]:

14 print "Density:",density

case=orig.cloneCase("damBreakDensity%f" % density).name

16 UtilityRunner(argv=["blockMesh","-case",case],silent=True).start()

UtilityRunner(argv=["setFields","-case",case],silent=True).start()

18 transport=ParsedParameterFile(path.join(case ,

"constant",

20 "transportProperties"))

transport["phase1"]["rho"][2]= density

22 transport.writeFile ()

BasicRunner(argv=["interFoam","-case",case]).start()

24 PVSnapshot(args=["--state=damBreakState.pvsm","--all",case])

bgschaid pyFoam 51/66



Introduction
The Utilities

The library
Advanced topics

Conclusion

ParsedParameterFile
The Runner-classes
The Application classes
Paraview/paraFoam
Structure of cases
Documentation and conclusion

Results of the variation

bgschaid pyFoam 52/66



Introduction
The Utilities

The library
Advanced topics

Conclusion

Configuration files
Cluster support
The PyFoam-network
Other

Configuring PyFoam

• Certain aspects of PyFoam can be modified using
configuration files

• This can happen in three locations (lowest number wins):

1 User-specific in ~/.pyFoam/pyfoamrc
2 System-wide in /etc/pyFoam/pyfoamrc
3 Hardcoded in the library
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Getting the current configuration

Ignaz wants to see the settings

1 > pyFoamDumpConfiguration.py

[Paths]

3 python: /usr/bin/python

bash: /bin/bash

5
[CommandOptionDefaults]

7 sortlistcases: mtime

9 [Logging]

default: INFO

11 server: INFO

13 [Network]

searchservers: 192.168.42.0/24 ,192.168.43.0/24

15 nrserverports: 100

socketretries: 10

17 sockettimeout: 1.

startserverport: 18000

19 portwait: 1.

21 [Execution]

controldictrestorewait: 60.

23
[ClusterJob]

25 path: /opt/openmpi/bin

ldpath: /opt/openmpi/lib

27 usefoammpi: ["1.5"]
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Changing settings

Ignaz wants to use the pyFoamNetList (see below)
in his network but the server has a different IP-address
than the one hard-coded in the library

Ignaz has a different Meta-Server

1 [Metaserver]

ip: 10.127.66.66

3
[Network]

5 searchservers: 10.127.0.0/16

He only has to distribute this to /etc/pyFoam/pyfoamrc to all
machines in his network
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Support for execution on a cluster

• PyFoam supports using Python-scripts as batch jobs in the
Sun Grid Engine-queue-manager

• Other queue-managers would be possible
• Not implemented because there was no need until now for this

• The support is implemented in a class ClusterJob
• Different methods can be overwritten to change the behavior

during different phases of the job

In the following example the lines starting with #$ are options for
the Sun Grid Engine
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Executing cluster-scripts

Ignaz’s simple script

1 #!/usr/bin/python

#

3 #$ -cwd

#$ -j y

5 #$ -S /opt/rocks/bin/python

#$ -m be

7 #

9 import sys ,os

from os import path

11
from PyFoam.Infrastructure.ClusterJob import SolverJob

13 from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

15 visc=float(sys.argv [1])

name="damBreak.visc_%g" % visc

17
class breakIt(SolverJob):

19 def __init__(self):

SolverJob.__init__(self ,

21 name+".run",

"interFoam",

23 template="damBreak.template",

foamVersion="1.5")

25
def setup(self ,parameters):

27 self.foamRun("blockMesh")

self.foamRun("setFields")

29 transport=ParsedParameterFile(path.join(self.casedir (),

"constant",

31 "transportProperties"))

transport["phase1"]["nu"][2]= visc

33 transport.writeFile ()

35 breakIt ().doIt()
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What the script does

1 Copy a template case to the actual case

2 Prepare the case using utilities

3 Modify the case

4 If it is a parallel run decompose the case
• Automatically knows the number of processors

5 Execute the solver

6 Reconstruct the case if it is a parallel run
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Running the script

First Ignaz trys it out on his local machine

> pyFoamClusterTester.py --proc=2 runDambreak.py 1e-4

2 Clearing out old the environment ....

Executing runDambreak.py 1e-4

4 ......

Ignaz breaks it on a single processor

> qsub runDambreak.py 1e-4

2 Your job 7663 (" runDambreak.py 1e-4") has been submitted

Ignaz breaks the dam on 128 CPU’s

> qsub -pe mpi 128 runDambreak.py 1e-5

2 Your job 7664 (" runDambreak.py 1e-5") has been submitted
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Every script should have a server

• The Runner-classes automatically start a small network-server

• This server monitors the progress of the application
• Also writes to the case to control it

• for instance to kill the calculation

• Server-processes automatically choose their port so that
multiple servers can run on one machine

• The server registers itself at a separate server called the
Meta-Server

• The Meta-Server is unique in the network and keeps track of
all the runs in the network

• Processes can be listed with pyFoamNetList

• Processes (and the Meta-Server) can be controlled using
pyFoamNetShell
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Architecture overview
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Finding the runs in the network

Ignaz wants to know when his runs will finish

> pyFoamNetList.py --time --user=igarten

2 Hostname | Port | User | Command Line

-------------------------------------------------------

4 compute -0-3. local | 18002 | igarten | interFoam -case damBreak1.restart

Time: 0.0888 Timerange: [ 0.0798 , 0.16 ] Mesh created: 0.0798 -> Progress: 11.22%<brk>

<cont> (Total: 11.22%)

6 Started: 2009-May -14 11:08 Walltime: 35630.4s Estimated End: 2009-May -18 03:20

-------------------------------------------------------

8 compute -0-2. local | 18001 | igarten | interFoam -case damBreak2.restart

Time: 0.09066 Timerange: [ 0.0798 , 0.16 ] Mesh created: 0.0798 -> Progress: <brk>

<cont> 13.54% (Total: 13.54%)

10 Started: 2009-May -14 09:09 Walltime: 42789.4s Estimated End: 2009-May -18 00:56

-------------------------------------------------------

12 compute -0-2. local | 18000 | igarten | interFoam -case damBreak3.restart

Time: 0.09123 Timerange: [ 0.0798 , 0.16 ] Mesh created: 0.0798 -> Progress: <brk>

<cont> 14.25% (Total: 14.25%)

14 Started: 2009-May -14 09:02 Walltime: 43211.8s Estimated End: 2009-May -17 21:15

-------------------------------------------------------

16 compute -0-2. local | 18003 | igarten | interFoam -case damBreak.clean

Time: 1.5 Timerange: [ 0 , 7.4 ] Mesh created: 0 -> Progress: 20.27% (Total: <brk>

<cont> 20.27%)

18 Started: 2009-May -14 18:47 Walltime: 8107.17s Estimated End: 2009-May -15 05:54

-------------------------------------------------------
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Controlling runs

Ignaz has a look and stops (with writing)

1 > pyFoamNetShell.py compute -0-3. local 18002

Connected to server compute -0-3. local on port 18002

3 42 available methods found

PFNET> help

5 For help on a method type ’help <method >’

Available methods are:

7 actualCommandLine

argv

9 ...

wallTime

11 write

PFNET> help stop

13 Method : stop

Signature : signatures not supported

15 Stops the run gracefully (after writing the last time -step to disk)

PFNET> time()

17 0.08889

PFNET> stop()

19 PFNET>

Goodbye
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Unmentioned scripts

Three interesting applications that were not menitoned are

pyFoamBench Utility to run benchmarks that are specified in a
parameter-file and compares them with a baseline

pyFoamCaseBuilder Builds cases from a template, a Xml-file
and a small number of user-inputs

pyFoamComparator Do systematic parameter-variations

pyFoamDisplayBlockMesh Displays the data from a
blockMeshDict graphically using the Vtk

... and a number of smaller utilities
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Stuff that needs work

PyFoam is a permanent work in progress, but stuff that needs to
be improved is

• Improvement of the ParaView-support
• 3.6 seems to be an improvement in itself

• Speed of ParsedParameterFile for large files

• Improvement of the network-structure
• Fault-tolerance
• Web-interface

• ... and a number of smaller issues
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Suggestions/Questions

Thanks for listening
• Questions?

• Suggestions for the library?
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