
The incomplete swak4Foam reference

Bernhard F.W. Gschaider

June 12, 2013

Contents

1 Introduction 1
1.1 Generating a printable version of this document 2
1.2 Authorship and license . 2

2 The parsers (expression grammar) 3
2.1 Expressions . 4

2.1.1 Constants and type building 6
2.1.2 Operators . 7
2.1.3 Mathematical functions available in all parsers . . . 8
2.1.4 OpenFOAM-specific functions 11
2.1.5 Valid names . 15
2.1.6 Variables and fields 15
2.1.7 Plugin functions . 18

2.2 Parameters . 19
2.2.1 Common parameters 20
2.2.2 Parser-specific parameters 25

2.3 Information written for restarting 27

3 Usable parts 28
3.1 Utilities . 28
3.2 Boundary conditions . 28
3.3 Function objects . 28
3.4 Function plugins . 28
3.5 Data entry . 28

1

4 Programming 29
4.1 Writing plugin-functions . 29
4.2 Adding new parsers . 29

List of Figures

1 Relationship Driver/Lexer/Parser 4
2 Inheritance relation of the Parsers 5

List of Tables

1 Selection names for the parsers 6
2 Structures for the different parsers 7
3 Component names for the data types 8
4 Shorthand for the parsers 11

1 Introduction

This document gives an overview of the usage of swak4Foam. It explains
the common paramters, expressions and usable parts. It is not intended
as an introduction to swak4Foam (for that have a look at http://openfoamwiki.net/index.php/File:Swak4Foam_PSU2011_presentation.pdf).

The structure of the document is

• the first part gives an overview of the parsers. The parser is the
part that reads expressions entered by the user and interprets them.
These parsers are central to swak4Foam and this chapter explains

– the expressions

– common settings and concepts

– order of evaluations

• the next part describes the parts of swak4foam that are directly us-
able. This means

– the utilities (including the popular funkySetFields)

– boundary conditions (including groovyBC)

2

http://openfoamwiki.net/index.php/File:Swak4Foam_PSU2011_presentation.pdf

– the collection of function objects

– and the function plugins that can extend the parsers

• the last part gives a short descrition on how to use functionality of
swak4foam in your own programs including a description of how to
write your own plugin-function

1.1 Generating a printable version of this document

This document was written in org-mode (http://orgmode.org) an outliner
mode for the text editor Emacs. This mode offers a number of ways to
export the contents to nicely formatted HTML and PDF. Please don’t try to
‘improve’ the document in any other text-editor as all the indentations etc
have special meaning.

Some of the diagrams require external softaware packages (they are
automatically called by org-mode):

Graphviz http://www.graphviz.org

Ditaa http://ditaa.sourceforge.net

PlantUML http://plantuml.sourceforge.net/

1.2 Authorship and license

This document is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License (for the full text of the license see http://creativecommons.org/licenses/by-
sa/3.0/legalcode). As long as the terms of the license are met any use of
this document is fine (commercial use is explicitly encouraged).

Authors of this document are:

Bernhard F.W. Gschaider original author and responsible for the strange
English grammar. He is also the current maintainer of this docu-
ment

(should you do substantial modifications to this document then add your-
self to this list and push the changes to a repository where the maintainer
can merge them to the main line)

3

http://orgmode.org
http://www.graphviz.org
http://ditaa.sourceforge.net
http://plantuml.sourceforge.net/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

2 The parsers (expression grammar)

The central concept in swak4Foam is the parser. A parser reads a string with
an expression, interprets it according to a grammar and then evaluates the
grammar yielding a result.

In principle each parser is composed of three elements pictured in fig-
ure 1:

• the Lexer which reads the tokens from the string (the lexers are gen-
erated by flex from a special description file)

• the GrammarParser which gets the token from the lexer and inter-
prets them according to a specified grammer (the grammar specifi-
cation is turned into a program by bison)

• the Driver is the part of the parser that is “seen” by the calling pro-
gram. It

– starts the grammar parser and the lexer

– assists them in decisions like “is this symbol a variable?”

– collects the results

– implements concrete data generation actions (like reading fields,
getting cell centers, etc)

In the following texts the term Parser will refer to this complex of three
entities

Which parser is used depends on the entity the calculation is done on
and determines the supported functionality (differential operators are for
instance not available on patch). Figure 2 gives an overview of the avail-
able parser/driver and their relations. Parsers with a « grammar » in the
name implement a parser/lexer pair which is used by the drivers derived
from it. Drivers whose names are in italics are only abstract classes.

As all drivers are derived from Common there is a set of options that is
available in all drivers/parser.

Usually the parser used is determined by the using entity (for instance
patch is used by groovyBC) but sometimes (for instance the swakExpression-
function object) the used parser can by selected by name. These names
and a description of the entity the parser works on are given in table 1.

In principle new parsers for different entities can be implemented and
selected at run-time (as for instance are the FAM -parsers which are lo-
cated in a separate library that has to be loaded at run-time)

4

Figure 1: Relationship Driver/Lexer/Parser

2.1 Expressions

The basic syntax of the expressions is modelled after the syntax of expres-
sions in OpenFOAM-programs. This means:

• the syntax is C++

– the usual precedence rules apply

• if possible the same operators and function names as in OpenFOAM
are used

The type of result of an exprerssion does not have to be declared. swak4Foam
determines it from the expression. In certain cases the calling entity (BC,
functionObject etc) expects a certain type and will complain after the
evaluation has finished.

Available types are

scalar ordinary floating point expressions

5

Figure 2: Inheritance relation of the Parsers

vector a three component vector (usually describing a position in space)

tensor a tensor with 3× 3 components

symmTensor a 3× 3 symmetric tensor (for the components aij = aji)

sphericalTensor Spherical tensor

boolean results of logical operations (can only be true or false). Certain
parsers implement them with scalars being 0 or 1. If values other
then 0 or 1 are found (which can happen for instance due to inter-
polation) they are interpreted as true (only exactly 0 is interpreted
as false)

If the type of subexpressions for a certain operator/function is incom-
patible (for instance when trying to add a vector to a scalar) the parser will
issue an error message during the evaluation.

Most parsers have two kinds of structures where calculations are per-
formed:

1. the “native” structure of that parser. For instance for the internalField-
parser this would be the values in the cells

2. the “secondary” structure of the parser. For the internalField this
would be the value on the faces (internalField is special as it also
has another secondary structure: the values on the vertexes)

6

Table 1: Selection names for the parsers

name Description
internalField Calculation on the internal values of a field
patch Calculation on a boundary patch
faceZone On a faceZone of the mesh
faceSet On a faceSet

cellZone Calculation on a cellZone

cellSet Set of cells
set Calculation on a sampledSet

surface Calculation on a sampledSurface

internalFaField Internal values of a FAM-field (1.6-ext only)
faPatch Boundary patch of a FAM-field (1.6-ext only)

swak4Foam does not automatically convert values between these struc-
tures (as it usually involves an interpolation) but specific functions has
to be used. The parser will complain if subexpressions of different struc-
tures are combined. This usually leads to confusion with constants which
are defined on the native structure and have to be converted explicitly to
the secondary structure if necessary (for instance toPoint(1) to use the
constant 1 on the vertexes of a patch). Table 2 gives an overview of the
structures.

The following sections describe the basic concepts of the expressions.

2.1.1 Constants and type building

This applies to all types of expressions.
Numeric constants can be written in any form they can be written in

C++/OpenFOAM. Just a few examples: 42, 3.1415, 6.66e2 etc
The symbol pi is π.
Vector values can be constructed using the keyword vector and three

scalar values (which can be constants or expressions that yield a scalar):
for instance vector(1,2,3) or vector(1,pos().x,0).

Tensors are constructed with the keyword tensor and 9 scalar values
for the components.

Symmetric tensors are constructed using the keyword symmTensor and
the 6 components axx, axy, axz, ayy, ayz and azz.

7

Table 2: Structures for the different parsers

Parser native structure secondary structure
internalField Cell values Face values and point values
patch Face values Point values
faceZone Face values none
cellZone Cell values none
faceSet Face values none
cellSet Cell values none
set Values on sample points none
surface Values on the facets vertices - not yet implemented
internalFaField Area (face) values Edge values
faPatch Edge values Point values

Spherical tensors are constructed using sphericalTensor and one
scalar value.

If no field or variable with the name I exists then this gives the unit
tensor.

The logical constants true and false are available

2.1.2 Operators

These operators are implemented for all the parsers (the usual precedence-
rules apply):

+ - * / Arithmetic operations

& Inner product for vectors and tensors

^ Cross product of two vectors

% Modulo operator. The implementation of this operator differs from
the usual implementations: for an expression a%b the function is
defined in the range −b

2 < x < b
2 as x (not as usual in the range

0 < x < b)

&& || The logical and and or operators

! Logical negation

8

< > >= <= Comparisons

== != Equality and inequality-operators

? : if-then-else-operator. An expression a ? b : c means “if the log-
ical expression a is true the value of expression b is used. Otherwise
the value of expression c”

In addition there are two unary operators:

- gives the negative of an expression

- * the Hodge dual of a tensor expression

• Component operator .
For the data types with multiple components the single components
can be accessed as scalar with the operator . and the number of
the component after the expression (for instance U.x gives the x-
component of the field U). Table 3 gives an overview of the compo-
nents of the various types

Table 3: Component names for the data types

Data type Components
Vector x y z
Tensor xx xy xz yx yy yz zx zy zz x y z
Symmetrical tensor xx xy xz yy yz zz
Spherical tensor ii

For the tensor types there is also the “component” T that transposes
the tensor (A.T gives the transposed tensor for A)

x, y and z for tensors are the rows as vectors.

2.1.3 Mathematical functions available in all parsers

The mathematical functions described in the Programmers Guide are im-
plemented in all parsers:

mag(x) Absolute value |x|. Implemented for all types. Yields a scalar

The following functions only work for scalars:

9

pow(x,y) Power xy. Only implemented for scalars

exp(x) Exponential function ex

log(x) Natural logarithm

log10(x) Logarithm with the base 10

sin, cos, tan Usual trigonometric functions

asin, acos, atan Inverse trigonometric functions

sinh, cosh, tanh Hyperbolic functions

asinh, acosh, atanh Inverse hyperbolic functions

sqr(x) Square x2

magSqr(x) Square of the magnitude |x|2

sqrt(x) Square root
√
x

erf(x) Error function

erfc(x) Complement error function

besselJ0, besselJ1, besselY0, besselY1 Bessel-functions

lgamma Logarithm gamma function

These functions depend on the sign of a scalar:

positive(x) 1 if 0 ≤ x. 0 otherwise

negative(x) 1 if x < 0. 0 otherwise

sign(x) 1 if x is positive. −1 if it is negative

These functions act on tensors:

diag returns a vector with the diagonal elements

tr Trace of the tensor

dev Deviatoric component

dev2 Deviatoric component times two

10

symm Symmetric component

twoSymm Symmetric component times two

skew Skew-symmetric component

det Determinant

cof Cofactors

inv Inverse

sph Spherical part of a tensor

eigenValues Return a vector with the eigenvalues of the tensor. Sorted by
ascending magnitude

eigenVectors Return a tensor with the eigenvectors of the tensor in the
rows. Sorted by ascending magnitude of the eigenvalue

These functions examine the whole fields (in parallel over all processors)
and return a field which has one value anywhere:

max(x) maximum of the field (for types with multiple components it re-
turn the maximum of each component)

min(x) the minimum

maxPosition(x) Only defined for scalar expressions. A vector with the po-
sition where the maximum value is found

minPosition(x) Like maxPosition but with the minimum

sum the sum of all the field values

average the average of the field values

There are also binary forms:

min(x,y) Gives back a field that in each “cell” has the minimum of x and
y in that cell

max(x,y) Same for the maximum

These functions build on the random numbers available in OpenFOAM:

11

rand A random number that is uniformly distributed in the range [0, 1).
It can take an integer argument that will act as a seed to the random
function (if unset the seed 0 is used) but with the number of the cur-
rent timestep added (so that the random distribution is different at
each time-step but still reproducible)

randFixed Similar to rand but the distribution of the random numbers
will stay the same for all time-steps

randNormal A Gauss-normal distributed random number (seed can be
provided). Different at each time-step

randNormalFixed Like randNormal but fixed in time

These functions are always available. They are not “mathematical” but
help identify certain entities:

id the identification number of an element (for instance the cell number
for an internalField). This number is only unique on each proces-
sor

cpu The processor number an element on is for a parallel run

2.1.4 OpenFOAM-specific functions

The following functions are not available in all parsers. In the description
in brackets there will be a shorthand description of the parsers in which
it will be available (mind: for the subset parser this doesn’t mean that all
drivers actually support this function: for instance does the volume func-
tion vol() not make sense for face zones. Calling this function will result
in an error message). Table 4 lists the short descriptions.

Table 4: Shorthand for the parsers

Parser Shorthand
internalField F
patch P
subset S
faInternalField FF
faPatch FP

12

• Information about the mesh
These functions give information about the mesh and are used with-
out arguments:

pos() Position of the native structures of the parser (for instance cell
centers for internalField) (F, P, S, FF, FP)

vol() Cell volumes (F, S)

area() Face area as a scalar (F, P, S, FF)

pts() Positions of the vertices (F, P, S, FP)

fpos() Positions of the faces/edges between cells (F, FF)

fproj() surface field with the projection of the face onto the Carte-
sian coordinates (F, FF)

face() Face vectors (F, FF)

dist() Scalar field that gives the distance to the nearest wall (using
wallDist) (F, P)

nearDist() Scalar field that gives the distance to the nearest wall
(using nearWallDist)(F)

rdist() A field with the distances from a given vector (shorthand for
mag(pos()-v)) (F, P, FF)

length() Edge length (FF, FP)

Sf() Surface vectors (P, S, FP)

Cn() Neighbour cell center position (P)

Fn() Neighbour face center position (FP)

delta() Cell center to face center vector (P, FP)

weights() Patch weighting factors (P, FP)

normal() Normal vectors (P, S, FP)

These functions are only available in the internalField-parser and
identify cells, faces or points belonging to a certain group. Most of
them take a name as an argument. The result is a boolean field:

set(name) True for all cells in the cell-set name

zone(name) True for all cells in the cell-zone name

fset(name) True for all faces in the face-set name

fzone(name) True for all faces in the face-zone name

13

pset(name) True for all points in the point-set name

pzone(name) True for all points in the point-zone name

onPatch(name) True for all faces on the patch name

internalFace() True for all faces which are not on a patch

This function is only implemented for the Subset-parser:

flip() For face-zones and face-Sets this gives the orientation of the
face. 1 if the face is oriented in the “right” direction, −1 if not.
Used to get consistent mass flows etc across these sets/zones

• Information about time
Some special functions implemented in all parsers:

oldTime(fieldName) value of a field at the last time

deltaT() Scalar field with the current time-step size

time() Scalar field with the current time

• Differential operators
The differential operators are only available in the internalField-
parser. They are available in various forms. In the following list an
argument like cellExpr means “an expression of any type defined
in a cell”, an argument faceScalar means “only a scalar defined on
a face is valid here”

div(cellExpr) Divergence of tensor and vector fields

div(faceScalar,cellExpr) Divergence with a “face flux”

div(faceExpr) Divergence of a value defined on faces

grad(cellExpr) Gradient

curl(cellVector) Curl of a vector field

magSqrGradGrad(cellScalar) Whatever the name says

snGrad(cellExpr) Surface normal defined on the faces

laplacian(faceScalar,cellExpr) Laplacian with an inhomogeneous
constant defined on the faces

laplacian(cellScalar,cellExpr) Laplacian with an inhomogeneous
constant defined in the cells

laplacian(cellExpr) Laplacian without a constant

14

ddt(cellFieldName) this only works for fields for which the last
time-step is stored. Time derivative

d2dt2(cellFieldName) Second time derivative

meshPhi(cellVector) Additional flux by the mesh movement

meshPhi(cellScalar,cellVector) Additional flux

flux(faceScalar,cellExpr) Flux

These functions give the explicitly discretized form. For a more de-
tailed explanation see the Programmers Guide.

The above functions are also implemented (if appropriate) in the
faInternalField. Additionally these functions are implemented
there:

lnGrad(areaExpr) Like snGrad

• Functions that interpolate
These functions interpolate fields between the native and the sec-
ondary structure of a parser

interpolate(cellExpr) Interpolates to the faces (F, FF)

interpolateToPoint(cellExpr) Interpolates to points (F)

interpolateToCell(pointExpr) Interpolates to the cells (F)

toPoint(faceExpr) To the point values (P, S, FP)

toFace(pointExpr) To the cell values (P, S, FP)

These functions are not strictly interpolations, but are used to cal-
culate a cell value from a face value. They are described in detail in
the Programmers Guide:

integrate(faceExpr) Integrate over the faces(F, FF)

surfSum(faceExpr) Sum the values on the faces(F, FF)

faceAverage(faceExpr) Average of the face values(F, FF)

reconstruct(faceScalar) Reconstruct a vector field from the face
fluxes (F)

These two functions are for quickly generating constant fields:

surf(scalar) Generate a constant face-field (no interpolation neces-
sary) (F, FF)

15

point(scalar) Generate a constant point-field (F)

• Other fields
These functions take a field name and return a field from another
place. They are only available in the patch parser:

internalField(fieldName) Get the value of the field on the neigh-
bouring internal cells(P, FP)

neighbourField(fieldName) For a coupled patch get the value of
the internal field of the coupled patch (P, FP)

These functions are only available if the patch has been defined as
a mappedPatch (directMappedPatch in OpenFOAM before 2.0) or a
subclass in the boundary-file:

mapped(fieldName) For a mapped patch get the value of the field
“on the other side” (P)

mappedInternal(fieldName) Similar but get the value of the inter-
nal field “on the other side” (P)

This function is the only “differential operator” defined on patches:

snGrad(fieldName) Gradient of the field name in the surface normal
direction (P, FP)

2.1.5 Valid names

Valid names in swak4Foam start with either a letter or _ and continue with
any number of letters, digits or _.

OpenFOAM allows the definition of names that have other charac-
ters too (like : or -). In that case these fields can be accessed using the
aliases.

2.1.6 Variables and fields

Names that are not functions specified in the grammar can be a number
of things. It is tested for a number of other things (the first matching thing
is used) and only when nothing of that name is found an error is raised:

1. The name of another mesh. This is only available in the Field-Parser
and will be discussed below

16

2. A timeline. This is an object where a scalar is specified as a function
of time. The current simulation time is used.

For the specification see the discussion of the timelines-entry be-
low

3. A lookup table. This works like a timeline but a scalar (that can be
different in each “cell”) has to be specified between (and)

For details see the discussion of lookuptables below

4. A field or a variable. Fields are GeometricFields that are usually de-
clared and used by the OpenFOAM-solver. Depending on the appli-
cation they are either

• looked up in memory

• looked up on disc and read in (in this case they may be cached
in memory)

Variables are intermediate values that have been assigned a name
and are stored in memory (more on the declaration of those below.)

The usual lookup order rules are (but you shouldn’t rely on them
anyway and give variables etc names that do not “shadow” regular
fields):

(a) Variable of same name and type is found before a field

(b) Data types are searched in this order: scalar, vector, tensor,
symmetrical tensor, spherical tensor

(c) Native structure before secondary structure

Before looking for a field the aliases table is checked and if the cur-
rent name is found there instead the real name defined for that alias
is searched. This allows accessing fields that have names with char-
acters that are not valid for swak-names.

5. Names of plugin-functions. The concept of plugin-functions is de-
scribed below

• Fields from other meshes
If another mesh named other has been specified in the field parser
(how to specify that see below) then the expression other(field)

17

tries to find field on the other mesh and uses the values in the ex-
pression (if necessary it interpolates the field to the local mesh. All
the usual problems associated with interpolation may occur).

This mechanism does not allow the specification of an arbitrary ex-
pression on the other mesh. That would be possible with a (yet un-
written) plugin-function.

• Types of variables
Once a variable has been set for a parser subsequent evaluations
can access its value. The variable can be set multiple times during
a timestep. At the end of a timestep the value is lost (so the variable
has to be set before it can be used).

There are two special flavors of variables that have to be specified
beforehand and change the value that is read:

stored variables these variables keep their value to the next timestep
so they can be used before they are set. An initial value for that
variable has to be provided.

delayed variables If this variable is used at a time t then the value
which that variable had at the time t − toffset will be used. If
that time is before the start-time then a default value is used.

If a variable sequence is evaluated multiple times during a timestep
(for instance because there is a sub-iteration cycle in the solver and
a boundary condition is evaluated multiple times) then these vari-
ables behave each time as if this was the first time during the time-
step and only keep the last value they were assigned for the next
time-step. This makes it for instance possible to accumulate things
like a mass-flow in a stored variable without bothering how many
sub-iterations the non-orthogonal corrector did.

There are two additional flavors of variables for advanced usage.
They only make sense for global variables and the types have to be
specified before they are first used:

StackExpressionResult this variable starts with a size of 0. If a value
is assigned than the uniform value is appended to this variable
(making it grow from a size of N to N + 1). The purpose of this
variable is collecting multiple values. At the end of a time-step
the size of the variable is reset to 0

18

StoredStackExpressionResult like StackExpressionResult but the
value is not erased between time-steps. Purpose of this variable
is collecting a timeline of a single value (for instance to check
convergence)

• Global variables
There is also the possibility to access global variables. These vari-
ables are organized in scopes which are a collection of variables.
Scopes are only accessed if specified so in the parser. This avoids
reading unneeded global variables.There are function objects that
can set the values of global variables.

2.1.7 Plugin functions

Plugin functions are functions that can be added to the parsers by loading
a dynamic library. They are added to a dynamic lookup-table and treated
similar to the builtin functions. The difference in the behavior is that they
are not polymorphic: that means that the type of the arguments and the
return value are fixed. While for instance the function mag(x) works for
various types of x (scalar, vector, tensor . . .) for a plugin function foo(x)

the type of x is fixed.
There are two basic types for arguments:

primitive types these are constant values (no expressions possible) of
simple types that can be parsed by the usual Istream-mechanism
in OpenFOAM. The possible primitive types are

word simple names

string character strings enclosed by “”

scalar real values

bool true or false

label integer values

vector three values enclosed by ()

parsed values these are values returned by a swak-parser (it does not
necessarily have to be the same parser type as the calling one. For
instance a plugin-function for a patch-parser can have an argument
that is the result of an expression on the internal field)

19

The first time a parser of a specific type (the field parser for instance)
is used and there are plugin-functions registered for that parser then a list
of the available functions and there arguments are printed to the standard
output. The information given for each function is

• the name

• type of the return value

• the arguments with type and a name that should give a hint on their
meaning. The type consists of

– the name of the parser (or primitive if a primitive value is ex-
pected) as given in table 1

– the type expected from that parser

separated by a /.
One example is the following output:

"Loaded plugin functions for ’FieldValueExpressionDriver’:"

lcFaceMaximum:

"volScalarField lcFaceMaximum(internalField/surfaceScalarField faceField)"

psiChem_RR:

"volScalarField psiChem_RR(primitive/word speciesName)"

This means that there is a function lcFaceMaximum that returns a volScalarField
and takes a value of type surfaceScalarField as the argument. The func-
tion psiChem_RR takes the name of a species as the argument.

If the evaluation of parameter expression fails the location in this ex-
pression will be given. Also the location in the expression that called the
plugin-function (in fact the whole stack if this expression is part of an-
other plugin-function call)

2.2 Parameters

Usually parsers are getting their configuration parameters from an Open-
FOAM dictionary (the only exceptions that a non-programming user will
encounter are the utilities). For the most commonly used cases these are:

groovyBC the sub-dictionary that has the boundary condition specifica-
tion (rule of thumb: the one that the type is specified in)

20

function objects the sub-dictionary that specifies the details of the func-
tion object (also the one with type in it)

Some of the parameters are required, some are optional.
Note: parameters like expression are not part of the parser specifica-

tion but are part of the item using the parser. The parser “only” evaluates
them.

Description of the parameters are split in two parts:

• parameters common to all parsers. This holds the majority of the
parameters including variable specification

• special parameters for concrete parsers

If in the following descriptions a default value for a parameter is specified
then the parameter is not required.

2.2.1 Common parameters

Parameters for debugging the parser are:

debugCommonDriver Writes debugging information of the Commondriver
like variable evaluations etc. Makes output very verbose. Type: in-
teger. Default: 0

traceScanning Makes the machine-generated (by flex) lexer-code out-
put debugging information. Type: Boolean. Default: false

traceParsing Makes the machine-generated (by bison) parser-code out-
put debugging information. Type: Boolean. Default: false

This option allows switching of warnings that point to a probable prob-
lem:

variableNameIdenticalToField if a variable is set to a name that is identi-
cal to the name of a that is already present in the current mesh then
a warning is issued because this usually indicates a mix-up. If this
option is set to true then no warning is given. Default: false

These settings change the behavior of where fields are looked for by
the parser. They may be overridden by the using application (for in-
stance for groovyBC searching files on disk is counterproductive. For
funkySetFields it is necessary):

21

searchOnDisc Search fields on the disc. Type: Boolean. Default: false

searchInMemory Look for files in memory. Either this or searchOnDisc
has to be set. Type: Boolean. Default: true

cacheReadFields If searchOnDisc is set and a file has been read from
disc it is stored in memory to avoid disc access on subsequent read.
Type: Boolean. Default: false

This parameter defines the behavior of the oldTime-function:

prevIterIsOldTime If for a field no old-time value is stored, but one from
a previous iteration then this is used. Type: Boolean. Default: false

These parameters are optional and are used for specifying timelines and
lookup tables to be used in expressions. The only difference between
them is how they are used but the specification syntax is the same:

timelines Single time-dependent values (for instance an in-flow veloc-
ity). The format of this is “a list of dictionaries”. There is only one
entry in that dictionary that is “swak-specific”:

name name of the timeline. The timeline will be accessed under
that name in expressions. The other parameters depend on the
interpolationTable-class of OpenFOAM:

fileName The name of the data file

outOfBounds How to behave if an argument outside of the speci-
fied data is given (for instance fail with an error)

readerType Type of the reader. Currently only two types are sup-
ported:

openFoam the regular OpenFOAM-format which is a list of
value pairs: time and value

csv Comma separated values format. This format requires ad-
dition parameters.

The default value is openFOAM
The following options are only required for the csv-format

hasHeaderLine Whether the file has a header line that should be
skipped before the actual data begins

timeColumn number of the column of the data that holds the time.
Note: the first column has the number 0 (C-convention)

22

valueColumns List with the column numbers that hold the actual
data. Length of the list has to be the number of components in
the data type (scalar: 1, vector: 3, tensor: 9)

separator Character that separates the data values in a line. De-
fault: a comma

lookuptables Single values that depend on another variables (for in-
stance a temperature-dependent thermal conductivity). Specified
exactly like timelines but when used a scalar expression has to be
provided.

This optional parameter can be used to define aliases for field and set
names:

aliases This is a dictionary that has the information which real field name
belongs to an alias name. Alias names got to conform to the stan-
dard for swak-names. Real names are according to the OpenFOAM-
standard (which allows more characters)

• General variable specification
Variables are specified by the parameter variables. If this parame-
ter is not set then no variables are accessible. The value of the pa-
rameter can have two forms: either a single string or a list of strings
(which is just syntactic sugar to make the variable list more read-
able). Inside the strings single variable specifications are separated
by ; (semicolons). Note: the last variable specification also has to be
terminated by a semicolon!

The variables will be evaluated in the order they are declared. A vari-
able can be assigned a value more than once.

The regular variable assignment is of the form

varName=expression;

which assigns the result of the expression to the variable varName.
The evaluation of expression happens with the current parser and
the whole (probably inhomogeneous) solution is saved for further
evaluations.

But variables can also be evaluated on other entities and their value
can be used in the local parser. This evaluation of external expres-
sions is triggered by {} after the variable name like this:

23

varName{parserType’name/regionName}=expression

This means that expression is evaluated with the parser specified
between {}. The form given above is the most general form. The
specification of the regionName is only needed in multi-mesh cases
if another mesh should be accessed. If omitted the current mesh
is used. The parserTypes can be one of the parsers specified in ta-
ble 1 and name selects the concrete entity the parser should work
on (for instance the patch name or the name of the cell set). If the
parserType is patch then it can be omitted and the specification of
the patch name is sufficient:

varName{patchName}=expression

evaluates the expression on patch patchName.

In the general case it is only possible to use external expressions
if the expression yields a uniform value (for instance a sum) as a
general way to interpolate from any entity to any other entity (for
instance from a cell set to a patch) in a predictable, logical way is
not possible. So if the expression yields a non-uniform value then a
warning is issued and the average is used.

The only exception currently implemented is if the current patch is a
mapped patch and the external expression is evaluated on the “part-
ner patch”. In this case the non-uniform result will be mapped to the
local patch.

• Special variables specifications
The two optional values storedVariables and delayedVariables

give swak a hint which variables should be treated special (for an
explanation on how these variables work see above)

storedVariables is a list of dictionaries that specify which variables
should be stored. The two entries in that dictionary are

name the name of the variable. If a variable of that name is encoun-
tered during the evaluation of expressions or being assigned to
then it is treated as a stored variable (which will keep its value
until the next timestep)

initialValue if the variable is accessed before it has been set, then
this value is used

24

In addition swak writes an additional entry (which is used for
restarting) if the variables are written out (for instance in a groovyBC):

value the current value of the stored variable as a dictionary. Entries
in that dictionary are (although they rarely have to be edited)
are

valueType word describing the value (for instance scalarmean-
ing that the value is a list of scalars)

isPoint whether this value is defined on the native structure or
the points

singleValue a boolean. If true the value is the same for the
whole list and therefor only a single value is stored

value list with the actual values (type according to the valueType)

The optional list delayedVariables holds the information about
those. The dictionaries hold the following information:

name the name of the delayed variable

delay how much the value is “delayed” between writing and reading

startupValue value to use if time is smaller that delay (and therefor
no values can be in the “pipeline”)

storeInterval Interval in which values are actually stored (the used
delayed values will be linearly interpolated between these val-
ues)

And again:

value holds the current value for restarting purposes

• Specification of global variables
The optional entry globalScopes gives a list with the names of the
global namespaces that are searched for global variables. These
namespaces are searched in the order they are specified in this list

• Specification of the mesh region
If the case is a multi-region case then the mesh region for this parser
can be specified. Otherwise the used region is context-dependent
(usually the default mesh is used):

region Name of the mesh to be used

25

2.2.2 Parser-specific parameters

Certain drivers/parsers have additional parameters.

• Additional parameters of the field-parser
This has only one additional parameter:

dimensions physical dimensions of the result. Depending on the
application this parameter may or may not be used. Optional
(otherwise the result is dimensionless)

• Additional parameter of the patch-driver
The only additional parameter here is

mappingInterpolation A sub-dictionary with the interpolation schemes
to be used if this is a mapped patch and mapping with interpo-
lation is used. Optional. If unset this is an empty dictionary

Also instances of this driver where it is not obvious from the context
(for a groovyBC it is) a parameter to specify the name of the patch is
needed:

patchName the name of the patch the parser works on

• Additional parameters for the subset drivers
The additional (optional) parameters for this class of drivers is con-
cerned with what is happening if a field is undefined on the native
structure:

autoInterpolate If this variable is true and for instance the parser
works on faces and a field is not defined as a face-field but is
defined as a volume-field then the driver will automatically in-
terpolate the field to the faces. If the variable is false then the
evaluation will fail. Default value: false

warnAutoInterpolate if this is true and autoInterpolate is true

then every time a field is automatically interpolated a warning
is issued. Default: true

• Additional parameter for cellSet and faceSet drivers
To specify which set the driver is working on one parameter is
needed:

setName name of the cell or face-set

26

• Additional parameter for cellZone and faceZone drivers
To specify which zone the driver is working on one parameter is
needed:

zoneName name of the cell or face-zone

• Additional parameters for sampled set and sampled surfaces
These two drivers have two parameters that determine how field val-
ues are mapped to them:

interpolate if this is true then the field values are interpolated to
the sample. Otherwise the field is “only” sampled (the value of
the nearest cell is used). Default: false

interpolationType This parameter is only read if interpolate is
true. This parameter determines how the interpolation should
take place. There is no default value for this.

Also there are parameters for each of the parsers that are used to
look up the surface or the set in a repository (a database that swak
has for these structures).

surfaceName name of the sampled surface the sampled driver
should work on

setName name of the sampled set to work with

Adding sets and surfaces to the repositories can be done with ap-
propriate function objects. If no surface with the name given by
surfaceName is present then the specification of the surface is looked
for:

surface a sub-dictionary with the specification of the sampled sur-
face (for details see the OpenFOAM-documentation). This sur-
face is added to the repository under the name surfaceName

A missing set setName is treated in the same way: The specification
is looked for

set Specification of the sampled set

For sampled surfaces two optional entries exist:

writeSurfaceOnConstruction if set to true the surface will be writ-
ten when it is constructed at the current time in a subfolder
surfaceRepository

27

autoWriteSurface if set to true the surface is written at every write-
time in a subfolder surfaceRepository

If one of the above options is set then the following option has to be
set:

surfaceFormat format in which the surface should be written

Similar optional entries exist for sampled sets:

writeSetOnConstruction if set to true the set will be written when
it is constructed at the current time in a subfolder setRepository

autoWriteSet if set to true the set is written at every write-time in a
subfolder setRepository

If one of the above options is set then the following option has to be
set:

setFormat format in which the set should be written

• Additional parameters for the finite area (FAM) drivers
The faInternalField driver adds the same parameter as the field-
driver:

dimensions physical dimensions of the result

The faPatch driver adds a parameter to determine the name of the
patch:

faPatchName the name of the patch

2.3 Information written for restarting

Certain features of the parsers (especially stored and delayed variables)
need to write information to allow an exact restart. For boundary con-
ditions this is the standard behavior and there (for instance in groovyBC)
that information is written to the field-file.

For other items (especially function objects) no such facility exists au-
tomatically. If such a driver has data to write (but only then) it creates at
write-time in the current time-folder a sub-folder swak4Foam in which it
saves a dictionary whose file name is composed of the name of the func-
tion object and the type name of the driver. During a restart these files are
read and stored and delayed variables are restored to the state they had

28

at write them. If this is not the desired behavior these files can be deleted
before restart.

3 Usable parts

3.1 Utilities

3.2 Boundary conditions

3.3 Function objects

3.4 Function plugins

3.5 Data entry

The main library introduces a subtype of DataEntry that is selected un-
der the name swak wherever data entries lie constant, polynomial etc are
used. After that a dictionary with additional parameters is required. An
example entry would look like this:

flowRateProfile swak {

expression "exp(-t)";

independentVariableName t;

valueType patch;

patchName top;

integrationIntervalls 100;

};

Required entries in the dictionary are

expression the expression to be evaluated

independentVariableName the name of the independent variable that
was passed during evaluation (usually this is the time)

valueType this determines the type of parser that is used. Additional pa-
rameters for the initialization may be needed and the usual entries
like variables are of course possible

Only for integrations an additional parameter is needed

integrationIntervalls number of intervals the integration range is di-
vided into.

29

4 Programming

4.1 Writing plugin-functions

4.2 Adding new parsers

30

	Introduction
	Generating a printable version of this document
	Authorship and license

	The parsers (expression grammar)
	Expressions
	Constants and type building
	Operators
	Mathematical functions available in all parsers
	OpenFOAM-specific functions
	Valid names
	Variables and fields
	Plugin functions

	Parameters
	Common parameters
	Parser-specific parameters

	Information written for restarting

	Usable parts
	Utilities
	Boundary conditions
	Function objects
	Function plugins
	Data entry

	Programming
	Writing plugin-functions
	Adding new parsers

