
An FAS-MultiGrid solver for steady, incompressible, 
viscous flow in OpenFoam®

L. Gasparini
Fondmetal Technologies, Italy

A new class  has  been  written  for  OpenFoam® implementing  the  basic  functionality  required  to 
develop non-linear FAS-multigrid solvers.  Its first use was in the development of a solver for steady, 
incompressible,  viscous  flow based  on  the  standard  simpleFoam application.  The new solver,  named 
MGsimpleFoam,  is briefly presented and applied to the computation of two classical 2D laminar flow 
benchmark cases:  the square lid-driven cavity at  Re=1000 and the  circular  cylinder  in  a channel  at 
Re=20. Compared to the standard simpleFoam solver the performance increase is remarkable.

I. Introduction
ultigrid is well known1 to be one of the most effective means to accelerate the numerical solution of both 
linear and non-linear problems. When implemented in the form of algebraic multigrid it is a powerful 

black-box tool for the solution of the large linear systems arising from the discretization of fluid dynamics 
equations; a typical example is the solution of the pressure equation, required by classical pressure-correction 
methods (e.g.  SIMPLE)  for  the incompressible  Navier-Stokes  and continuity  equations.  The GAMG linear 
solver  (or its  corresponding GAMG smoother) is  an example of this kind of tool which is available in the 
distribution of OpenFoam®. However, while accelerating the solution of the linear systems at each iteration of 
the SIMPLE algorithm, linear multigrid methods do nothing against the reducing speed of convergence of the 
non-linear equations with increasing mesh size. In fact when using linear-multigrid solvers for the solution of 
the linear systems the cost of a single iteration scales approximately linearly with the number of mesh cells, 
however the number of iterations (or time-steps) required to reach a specified level of convergence increases 
with mesh size; thus, total execution time increases at a much faster rate than the number of cells in the mesh.

M

Non-linear multigrid methods, also known as FAS-MG (Full Approximation Scheme Multi Grid), are an 
effective way to reduce computational time especially on medium and large meshes, by keeping the number of 
iterations (although more costly iterations, also called multigrid cycles) approximately constant with increasing 
mesh size. While similar in principle to linear-multigrid methods they are applied directly to the solution of the 
non-linear equations. Furthermore, their effectiveness can be combined with that of linear-multigrid methods, by 
using the latter in the solution of the linear systems at each multigrid iteration. Thus, looking for a significant 
improvement in the computational performances of simpleFoam, the implementation of an FAS-MG solver for 
the computation of steady, incompressible, viscous flow was attempted.

II. The new solver
The  first  step  in  the  development  of  the  new  solver  was  to  introduce  the  functionality  of  automatic 

generation of a series of coarser meshes (coarse level meshes) starting from the usual, unique, user defined grid, 
which represent the finest level of the multigrid hierarchy. Since such a process is inherent, although hidden to 
the  user,  in  the  GAMG linear  solver  class,  it  appeared  that  the  fundamental  components  were  already  at 
disposal. Furthermore, the exploitation of the natural capability of OpenFoam® to deal with general polyhedral 
cells and the extremely powerful mesh-manipulation classes available within OpenFoam® allowed to keep the 
required coding to an (un)surprisingly very limited amount. As a result, a new class FASMGagglomeration has 
been  written,  based  on  the  GAMGagglomeration class,  implementing  the  generation  of  the  coarse  level 
fvMeshes and implementing the inter-level field transfer operators (prolongation and restriction) required by 
FAS-MG.

The second step was the development of the solver itself, with the following characteristics:
• FMG (Full Multi Grid) capability, at user control; which means that the solution can be started either 

on the finest-level grid or on any of the coarse level grids; in the latter case the solution on the coarse  
level is then used to initialize the next finer level and so on, until the finest-level grid is solved.

• V or W multigrid cycle, at user control, with specified number of pre- and post-smoothing sweeps on 
each grid level.

• SIMPLE-based smoother; which means that an iteration of the SIMPLE algorithm on a given mesh is 
applied as the basic smoother for the non-linear MG method.
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The new solver,  quite  obviously named  MGsimpleFoam, is  currently  only applicable  to the solution of 
laminar flows, since the treatment of turbulence models within the MG-framework will require some (although 
limited  and  rather  straightforward)  extensions  to  the  current  implementation  of  the  turbulence  models 
themselves.

In the following sections the results obtained with the new solver in the computation of two simple and 
classical 2D laminar flow benchmark cases will be presented, and its performance will be compared to that of 
the standard simpleFoam solver. Note that since the two solvers apply (at least on the finest mesh, in the case of 
MGsimpleFoam) the same discretization schemes as well as the same pressure-velocity coupling scheme, the 
converged solutions delivered on the same mesh are exactly identical; thus, the focus of the presentation will be 
on the achievable reduction of execution times.

III. 2D square lid-driven cavity at Re=1000
The first test case is the laminar flow in a 2D square lid-driven cavity at Reynolds number of 1000, based on 

lid velocity and cavity edge length. This case is similar to the one included in the tutorials, although run at much 
higher Re.

Three computations were performed using both simpleFoam and MGsimpleFoam on a series of structured 
meshes of increasing resolution, going from 32x32 to 64x64 to 128x128 uniform cells.

Both solvers  used the same space discretization schemes (in particular  the Gauss  linear  scheme for the 
div(phi,U) term), the same linear solvers (BICCG for U, GAMG for p) with identical options and finally they 
also  used  the  same  parameters  and  relaxation  factors  for  the  SIMPLE  scheme  (no  orthogonal  correction 
iterations, relaxation factor equal to 0.3 for p, 0.7 for U).

In MGsimpleFoam coarse level grids where automatically generated using:
nCellsInCoarsestLevel 50
agglomerator faceAreaPair
mergeLevels 2

and a V-cycle multigrid sequence with 1 pre- & post-smoothing sweep on the finest grid and 2 pre- & post-
smoothing sweeps on coarser grids was adopted (without many optimization efforts). Although, as mentioned, 
the  code  has  FMG  capability,  the  solution  was  started  directly  on  the  finest  level  mesh  to  provide  a 
straightforward comparison with simpleFoam.

Figure 1 shows the convergence histories of the pressure equation for the two solvers on the three different 
grids. It is very clear that while simpleFoam requires a largely increasing number of iterations with increasing 
mesh  size,  MGsimpleFoam achieves  the  goal  of  requiring  a  practically  mesh-size-independent  number  of 
iterations to converge to machine-epsilon.

Figure 2 shows that although the cost of each iteration (i.e. of each multigrid cycle) in MGsimpleFoam is 
approximately 2.5 times higher, there is a significant and growing improvement in computational time, with the 
new solver  being more than 10 times faster  on the finest  mesh. Note that  the reported  computational  time 
includes the time spent for the initial generation of all coarse level meshes in MGsimpleFoam.

As mentioned above, converged solutions are identical for both solvers as shown in figure 3 in the case of 
the 128x128 cells mesh. 

IV. 2D laminar cylinder in a channel at Re=20
The second test case presented is the steady laminar flow benchmark of Schäfer and Turek2: it consists in a 

circular cylinder in a channel at Re=20, based on average inflow velocity and cylinder diameter. It  has been 
solved on two unstructured meshes having approximately 15000 (coarse) and 60000 (fine) triangular cells.

Space discretization schemes, linear solvers and SIMPLE parameters are identical to the previous case and 
again identical  for both solvers.  Now however,  due to the irregular  unstructured mesh, one non orthogonal 
correction iteration is specified. Furthermore, the set of options used in  MGsimpleFoam for the generation of 
coarse level meshes now reads:

nCellsInCoarsestLevel 100
agglomerator faceAreaPair
mergeLevels 1

The specification of a mergeLevels equal to 1 results in the generation of many more coarse grid levels 
(6 on the coarse  mesh and up to 8 on the fine mesh),  and could be considered a kind of semi-coarsening 
methodology. On one side this increases memory occupation and the cost of each multigrid cycle, but on the 
other side it  improves the performance  of FAS-MG. It  can be roughly estimated that  in this case memory 
occupation is approximately doubled (since each coarser level mesh is approximately half the size of the finer 
level one) and that one MGsimpleFoam iteration will cost about 6-7 times more than one simpleFoam iteration. 
Finally, the same V-cycle is used as specified previously and again the solution is started directly on the finest-

2



level.
Figure  4  shows  the  user-defined  mesh  for  the  coarse  grid  case  of  15K  cells  and  the  automatically 

agglomerated coarse-level meshes on level 2, 4 and 6 (coarsest), while figure 5 presents the final converged 
solution computed on the fine grid of 60K cells.

Figure 6 shows, again, the convergence histories of the pressure equation for the two solvers on the two 
different  grids.  It  is  once  more  clear  that  while  simpleFoam requires  a  large  number  of  iterations,  which 
increases with mesh size (to the point that convergence to machine-epsilon was not reached on the finest grid 
after 8000 iterations), MGsimpleFoam always converged to machine-epsilon in less than 60 cycles.

Figure 7 shows that even in terms of computational time MGsimpleFoam is really much faster on both grids.
From an engineering  point  of  view one  might  be interested  more  in  the convergence  of  some integral 

quantities, like Cl and Cd, rather than on the convergence of the residual. One advantage of multigrid solutions 
is that the flowfield stabilizes quite quickly so that the convergence of the force coefficients is also very fast. 
This behavior is shown in figures 8 and 9. Here, the magnitude of the difference between the current value of 
the drag coefficient at each iteration and the final converged value (written with 9 digits accuracy) is plotted 
respectively versus the number of iterations and the execution time for both simpleFoam and MGsimpleFoam. 
We can see that using MGsimpleFoam the value of the drag coefficient is computed to 4-digit accuracy after as 
few  as  14  iterations  on  both  coarse  and  fine  grids,  whereas  more  than  1000  iterations  are  required  by 
simpleFoam on the fine grid. This results in one order of magnitude reduction of computational time.

V. Conclusion
A new solver, named  MGsimpleFoam,  has been developed for the computation of steady, incompressible 

viscous flows; it applies the SIMPLE algorithm as smoother within the context of a non-linear FAS-MG method 
for the solution of  the incompressible Navier-Stokes and continuity equations on general polyhedral meshes.

When compared to the standard  simpleFoam solver on two simple 2D laminar flow benchmark cases, the 
new solver showed the expected large reduction in the number of iterations required to reach convergence and 
thus a really substantial reduction of computational time, up to a factor of 10 on finer meshes.

The  solver  is  based  on  a  new  class,  FASMGagglomeration,  which  takes  care  of  the  initial  automatic 
generation of coarse level  grids  and of the transfer  of fields between grid  levels.  Thus, a similar FAS-MG 
reformulation of most current single-grid solvers available within OpenFoam® should be feasible with limited 
efforts,  including  unsteady  solvers  (like  icoFoam and  turbFoam)  by using  a  dual-time  approach  and 
compressible flow solvers  (like  rhoCentralFoam or the recently improved3 original  centralFoam solver)  by 
using explicit Runge-Kutta smoother.
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Figure 1. Pressure equation convergence histories versus number of iterations for the driven cavity test case.

Figure 2. Pressure equation convergence histories versus execution time for the driven cavity test case.

Figure 3. Solution of the driven cavity test case on the 128x128 cells mesh.
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a) Input mesh, approx. 15000 triangles.

b) Level-2  mesh

c) Level-4  mesh

d) Level-6  mesh

Figure 4. Initial mesh and a few coarse level agglomerated meshes for the coarse grid laminar cylinder test case.

Figure 5. Converged solution on the fine grid for the laminar cylinder test case.
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Figure 6. Pressure equation convergence histories versus number of iterations for the laminar cylinder test case.

Figure 7. Pressure equation convergence histories versus execution time for the laminar cylinder test case.
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Figure 8. Drag coefficient convergence histories versus number of iterations for the laminar cylinder test case.

Figure 9. Drag coefficient convergence histories versus execution time for the laminar cylinder test case.


