
Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

swak4Foam for programmers
Programming when it can’t be avoided

Bernhard F.W. Gschaider

Zagreb, Croatia
24. June 2014

Bernhard F.W. Gschaider swak4Foam for programmers 1/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Outline I

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General

Bernhard F.W. Gschaider swak4Foam for programmers 2/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Outline II
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 3/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 4/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 5/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

What is going to be thrown at you

• Programming in/with swak4Foam
• Using the "programming-like" features in swak

• And a bit of stuff that is useful when you develop your own
solver

• Python integration
• Writing plugin-functions

Bernhard F.W. Gschaider swak4Foam for programmers 6/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Intended audience and aim

• Intended audience for this presentation:
• people who already worked with swak4Foam
• know some programming

• either Python or C++ would be good

• Aim of the presentation
• Explain some concepts necessary for the advanced usage of

swak4foam
• Show possibilities and limitations of the Python-integration
• Demonstrate how to write functions that integrate into

swak-expressions
• The presentation walks the user through two examples that

demonstrate the concepts discussed
• Sources to the examples are available separately

Bernhard F.W. Gschaider swak4Foam for programmers 7/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 8/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

What is swak4Foam

• If you have to ask you’re probably in the wrong presentation
• But lets explain it anyway

Bernhard F.W. Gschaider swak4Foam for programmers 9/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

What is swak4Foam. Take 2

From
http://openfoamwiki.net/index.php/Contrib/swak4Foam

swak4Foam stands for SWiss Army Knife for Foam. Like that knife
it rarely is the best tool for any given task, but sometimes it is
more convenient to get it out of your pocket than going to the

tool-shed to get the chain-saw.

• It is the result of the merge of
• funkySetFields
• groovyBC
• simpleFunctionObjects

and has grown since
• The goal of swak4Foam is to make the use of C++

unnecessary
• Even for complex boundary conditions etc

Bernhard F.W. Gschaider swak4Foam for programmers 10/153

http://openfoamwiki.net/index.php/Contrib/swak4Foam

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

The core of swak4Foam

• At its heart swak4Foam is a collection of parsers (subroutines
that read a string and interpret it) for expressions on
OpenFOAM-types

• fields
• boundary fields
• other (faceSet, cellZone etc)

• . . . and a bunch of utilities, function-objects and boundary
conditions that are built on it

• swak4foam tries to reduce the need for throwaway C++
programs for case setup and postprocessing

Bernhard F.W. Gschaider swak4Foam for programmers 11/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 12/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Command line examples

• In the following presentation we will enter things on the command
line. Short examples will be a single line (without output)

ls $HOME

• Long examples will be a white box
• Input will be prefixed with a > and blue
• Long lines will be broken up

• A pair of <brk> and <cont> indicates that this is still the same line in
the input/output

• «snip» in the middle means: "There is more. But it is boring"

> this is an example for a very long command line that does not fit onto one line of <brk>
<cont> the slide but we have to write it anyway

first line of output (short)
Second line of output which is too long for this slide but we got to read it in all <brk>

<cont> its glory

Bernhard F.W. Gschaider swak4Foam for programmers 13/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Work environment

• You will use two programs
• A terminal
• A text-editor

• For the text-editor you have the choice (these should be
installed):

• Emacs (king of text-editors)
• VI (my brother uses it. So. OK)
• Kate with KDE
• Gedit with Gnome

• It is assumed that you use the Workshop-USE-stick with
pre-installed

• foam-extend
• swak4foam

Bernhard F.W. Gschaider swak4Foam for programmers 14/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Preparing the shell

• During the remaining presentation we assume that
• the zsh is used (optional. bash works too)
• we use foam-extend 3.1 (required)

• Switch to zsh

zsh

• You should see a more colorful prompt with (OF:-) on the left
• Only with correct environment set (probably only on the stick)

• Switch on Foam-Extend-3.1

f31

• Now the prompt should show (OF:3.1-Opt)
• Create a working directory and go there

mkdir swakProgramming; cd swakProgramming

Bernhard F.W. Gschaider swak4Foam for programmers 15/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Getting the examples

• Download the examples from the openfoamwiki.net

wget http://openfoamwiki.net/images/5/50/PyFoamProgramming_OFW9.tar.gz

• or (same, but shorter)

wget http://bit.ly/1ioH6ix -O PyFoamProgramming_OFW9.tar.gz

• Extract examples

> tar xzf PyFoamProgramming_OFW9.tar.gz
> ls
PyFoamProgramming_OFW9.tar.gz
calcDrop/
gameOfLife/

Bernhard F.W. Gschaider swak4Foam for programmers 16/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Make sure swak4Foam is installed
• Call the most popular utility of swak4Foam

• swakVersion reported below the usual header

> funkySetFields
/*---*\
| ========= | |
| \\ / F ield | foam -extend: Open Source CFD |
| \\ / O peration | Version: 3.1 |
| \\ / A nd | Web: http ://www.extend -project.de |
| \\/ M anipulation | |
---/
Build : 3.1
Exec : funkySetFields
Date : Jun 07 2014
Time : 18:35:01
Host : bgs -cool -greybook
PID : 11491
CtrlDict : /Users/bgschaid/OpenFOAM/foam -extend -3.1/ etc/controlDict
Case : /Volumes/Foam/Cases/Zagreb2014
nProcs : 1
SigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

// * //
swakVersion: 0.3.1 (Release date: Next release)
// * //

--> FOAM FATAL ERROR:
funkySetFields: time/latestTime option is required

From function main()
in file funkySetFields.C at line 643.

FOAM exiting

Bernhard F.W. Gschaider swak4Foam for programmers 17/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Installing a development version of swak4Foam

• New features of swak4Foam are published to the development
repository in advance

• Beware: Development means "can be broken/unstable" (but
doesn’t have to be)

• Installing/Compiling should be simple three-step:
1 Pull the repository
2 Change to the correct branch

• Usually port_2.0.x is a good guess
3 Compile

Don’t do that now. Do it at home

> hg clone http ://hg.code.sf.net/p/openfoam -extend/swak4Foam
> cd swak4Foam
> hg update port_2 .0.x
> ./ Allwmake

Bernhard F.W. Gschaider swak4Foam for programmers 18/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Python-integration

• Usually the python-integration is not configured out of the box
• Needs the location of the library and the headers

• Different on different systems
• In toy-distributions the headers are not part of the regular

python-pagckage
• For instance Ubuntu: you need python-dev

• If the compile-script finds a file swakConfiguration it sources it to
set special variables

• This is the place to set up Python-support
• And other things (see README)

• Allwmake will automatically compile the Python-support

swakConfiguration for Ubuntu

export SWAK_PYTHON_INCLUDE="-I/usr/include/python2 .7"
export SWAK_PYTHON_LINK="-lpython2 .7"

export SWAK_COMPILE_GRAMMAR_OPTION="-O1"

Bernhard F.W. Gschaider swak4Foam for programmers 19/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

About this presentation
What we’re working with
Before we start

Upgrading swak4Foam

• Unfortunately the version on the USB-stick comes without
• Python-support
• the sources (needed for plugin-development)

• We’re going to install packages to override this
• They’ll be gone when you reboot

==

> wget http ://bit.ly/1 lSv2RJ -O swak.deb
> wget http ://bit.ly/1 uLsbzn -O swak_dev.deb
> sudo dpkg -i --force -all *.deb

Bernhard F.W. Gschaider swak4Foam for programmers 20/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 21/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Limitation of "regular" swak-expressions

• In the usual use swak-expressions are limited
• The are always executed

• No way to avoid execution (for instance if a field is not
present)

• They are executed "in the moment"
• No sense of the past (aka storage)
• The variables are just a way to make the expressions simpler

• They live alone
• No way to communicate with other parts of swak

• This section introduces facilities in swak to work around this
limitations

• They make swak4Foam an almost complete programming
language

• But it is not Turing-complete

Bernhard F.W. Gschaider swak4Foam for programmers 22/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

What is Turing-complete ?

• Google it!

• You don’t know "Pearls before swine"?
• Google it

Bernhard F.W. Gschaider swak4Foam for programmers 23/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 24/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Purpose of stored variables

• Stored variables are like regular variables, but keep their value
• Possible applications:

• "Did alpha1 reach this part of the patch yet?"
• "What is the highest pressure in this cell . . . ever?"
• "What is the accumulated mass-flow through this faceSet?"

Bernhard F.W. Gschaider swak4Foam for programmers 25/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Using stored variables

• Used in any other expression like regular variables
• Say the name and use the value

• Value from the previous time-step
• Assign values to it

• Which can be used at the next time-step

• To use a variable as stored it has to be declared
• Optional dictionary storedVariables with list of dictionaries

does this. Entries are
name the name of the variable

intialValue Value to be used at the first time-step

Bernhard F.W. Gschaider swak4Foam for programmers 26/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Example of a stored variable declaration

boundaryField of 0/wet

wall {
type groovyBC;
storedVariables (

{
name isWet;
initialValue "0";

}
);
variables (

"isWet=(alpha1 >0.5)␣?␣1␣:␣isWet;"
);
valueExpression "isWet";

}

Bernhard F.W. Gschaider swak4Foam for programmers 27/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Schizophrenia of stored variables
• Stored variables have two different values

• The values you set
• The value you get

• At the end of the time-step the value you set becomes the variable you get
• The last set value is used

• This distinction is important for expressions that may be called multiple times
per time-step

• For instance if the solver does more than one iteration per time-step
• This behavior is what you want most of the time

• Example: You don’t want the cumulative mass-flow to depend on the number of
corrector-iterations

• But it may lead to unexpected behavior if you want to do something like (s is
stored):

"s=s+val1; s=s+val2;"

You’ll probably want

"s=s+val1+val2;"

or

"tmp=val1; tmp=tmp+val2; s=s+tmp;"

Bernhard F.W. Gschaider swak4Foam for programmers 28/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Restarting and limitiation

• Stored variables survive case restarts
• In groovyBC restarting information is written into the field-file
• Function objects etc write that information into a special

sub-directory of the time-directory
• Stored variables work in parallel

• Every processor stores its part of the information
• Reconstructing and repartitioning not supported

• Dynamic meshes are not supported
• Values would have to be remapped

• Hard to do in a general way

Bernhard F.W. Gschaider swak4Foam for programmers 29/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 30/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Use cases

• Sometimes a swak-entity would like to access results from
another entity

• For example: multiple groovyBC-boundary conditions want to
know if the valve is opened or shut

• To have a consistent implementation opened or closed should
be calculated in one place

• One function object needs information from another
• We’ll see an example for that later

• Global variables allow implementing such things

Bernhard F.W. Gschaider swak4Foam for programmers 31/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Using global variables

• That is the easy part:
• Specify a list globalScopes
• If a variable is not found in the local scope then these scopes

are searched one after another
• Scopes allow organizing global variables by source/purpose
• If a scope does not exist: Failure

In some 0/U

globalScopes (
outletState
inletState

);

Bernhard F.W. Gschaider swak4Foam for programmers 32/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Declaring global variables/scopes

• Not everyone can do it
• Only special function objects

• Usually in swakFunctionObjects

• Usually: addGlobalVariable
globalScope Name of the scope to specify
globalVariables Dictionary with the variables in that scope.

Entries include:
valueType whether the variable is a scalar,

vector etc
value single value of type valueType.

• In the beginning global variables are uniform

Bernhard F.W. Gschaider swak4Foam for programmers 33/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Detour: uniform (single) values variables

• swak-variables have a valueType
• they can be single values (uniform) or non-uniform
single values just one value

• these variables can be used everywhere
• can be overwritten with non-single values too

non-uniform fields field with N different valueType
• can only be used in expressions where N

matches the other operands
• for instance: in an internalField N must

match the number of cells
• this constraint is checked on processors for

parallel runs
• swak tries to use single values wherever possible

• min, max etc try to return single values

Bernhard F.W. Gschaider swak4Foam for programmers 34/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Specifying some global variables

functions in controlDict

defineState {
type addGlobalVariable;
outputControl timeStep;
outputInterval 1;

globalScope outletState;
globalVariables {

closed {
valueType scalar;
value 0;

}
airReachedOutletTime {

valueType scalar;
value -1;

}
shutdownTime {

valueType scalar;
value 1;

}
}

}

Bernhard F.W. Gschaider swak4Foam for programmers 35/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Setting global variables

• Usually with calculateGlobalVariables function object
• Works like swakExpression without expression
• Sets variables for one scope

• Specified with toGlobalNamespace

• The entries in variables are evaluated as usual
• Variables in the list toGlobalVariables are copied to the

global scope
• Under that name

Bernhard F.W. Gschaider swak4Foam for programmers 36/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Example: open valve if sensor point is reached

openIfSensorReached {
type calculateGlobalVariables;
valueType set;
setName sensor;
toGlobalNamespace outletState;
globalScopes (

outletState
);
set {

type swakRegistryProxy;
axis y;
setName sensor;

}
toGlobalVariables (

closed
airReachedOutletTime

);
variables (

"state=average(alpha1);"
"thresA =0.9;"
"opening =(closed >0.5␣&&␣state >thresA)?1:0;"
"closed =(opening >0.5)␣?␣0␣:␣closed;"
"airReachedOutletTime =(opening >0.5)␣?␣-1␣:␣airReachedOutletTime;"

);
}

Bernhard F.W. Gschaider swak4Foam for programmers 37/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Writing global variables

• Function object dumpSwakGlobalVariable dumps the value
of a global variable to file

• Rarely needed

Bernhard F.W. Gschaider swak4Foam for programmers 38/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 39/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Delayed variables

• Acts like a stored variable but the written values are only used
after a delay tdelay

• Usage example: sensor with a reaction time
• Delayed variables are declared like stored variables in a list
delayedVariables:

name guess
delay the delay time tdelay (fixed value)

startupValue value used during the first tdelay seconds of the
simulation when no value is (yet) available

storeInterval interval ∆t in which values are going to be
stored. Times between that are interpolated
(linear).

• For an example see the cleaningTank-examples in
Example/FromPresentations

Bernhard F.W. Gschaider swak4Foam for programmers 40/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Stacked variables

• These are very obscure
• Purpose of these is to collect multiple values into one array

• Probably for consumption in another function object

• Setting the variable value appends a value to the variable
• Comes in two flavors
StackExpressionResult Variable is reset at the start of each

timestep
• Application: collecting values from different

sources/locations
StoredStackExpressionResult Variable keeps its value

between steps
• Application: Collects values from different

time-steps to check convergence

Bernhard F.W. Gschaider swak4Foam for programmers 41/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Words of caution

• All these variable types (stored, global, delayed . . .) are very
useful but

• . . . also very dangerous:
• Storing them costs memory. If used carelessly they quickly fill

up your machine even for moderately-sized cases
• Example: a delayed variable on an internalField with a

small storeInterval

• swak4Foam currently has no memory holes (that I know of)
but with these variables you can make it look like it

• Variables "with memory" have not been tested with dynamic
meshes

• Probably won’t work

Bernhard F.W. Gschaider swak4Foam for programmers 42/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 43/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

What means "programming"?

• This means function objects that
• Store data
• Control the execution of other function objects

• Also stuff that doesn’t fit anywhere else
• Especially if it helps programmers

• This section will only say "it is there"
• Search the examples for usage examples

Bernhard F.W. Gschaider swak4Foam for programmers 44/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

readAndUpdateFields

• Reads a field from disc at the start of the simulation
• Keeps it in memory

• Others can access it by name
• Updates the boundary conditions at the end of each timestep
• For updating the internal field use a manipulateField function object

• Typical applications:
stand-in you have a boundary condition/function object that

needs a special field that the current solver/utility does
not provide

recording for post-processing the loaded field has a groovyBC that
calculates a new value. This value can later be used

• Example: store wall-shear-stress for output
• Example: use a stored variable to record the distribution

of the maximum temperature on the patch

Bernhard F.W. Gschaider swak4Foam for programmers 45/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

panicDump

• Sometimes the simulation diverges. You see it coming but
have no idea why because nothing is written to disc

• This is an oldie:
• Check limits for certain fields
• If they’re outside the "comfort zone" specified by the user:

• Write all fields and stop the solver
• "Comfort zone" depends on the solver:

• For instance: maximum velocity higher than the speed of
sound for an incompressible solver

• Or: simulation of your tea-cup reaches temperatures that
would melt steel

• New feature:
• If optional parameter storeAndWritePreviousState is set to
true then the N previous time-steps are also written

• Application: "why did that cell freak out?"

Bernhard F.W. Gschaider swak4Foam for programmers 46/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

writeAndEnd-function objects

• There is a number of function objects that start with
writeAndEnd

• They generalize the idea of panicDump:
• Check for a condition and end the run if the condition is

fulfilled
• The concrete implementations offer as conditions:

• Field ranges
• swak-expressions
• Python-programs

• With these it is easy to program conditions like: "If the time is
bigger than 42 and the amount of H2O is bigger than 0.1
stop. Or if But not if . . . "

Bernhard F.W. Gschaider swak4Foam for programmers 47/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Caution with stored time-steps

• In the next swak4Foam-version a number of function-objects
offer the possibility to store and write old time-steps

• It can’t be stressed enough: this needs memory. And lets be
clear: lots of it

• Basically they work by
• Going to the object registry
• Saying: "What have you got"
• Copying all into a separate registry
• In case of an event writing that stuff
• If no longer needed discarding it

• So if you want to write the 10 last timesteps expect memory
usage to rise by a factor of 10

• Don’t use in production runs

Bernhard F.W. Gschaider swak4Foam for programmers 48/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

writeOldTimesOnSignal

• Sometimes panicDump doesn’t work anymore because a signal was
raised

• Floating point exception
• Segmentation fault
• etc

• But it would be nice to see the latest state
• Of course you could simply write all time-steps

• But that takes time
• State at the time of failure is unknown

• In these cases writeOldTimesOnSignal can be used
• It replaces the standard signal-handler
• When the signal is raised it writes stored old time-steps and the current

state
• Afterwards calls the original handler

• If you’re hardcore you can even intercept Ctrl-C
• the SIGINT-signal

• Don’t use in production runs

Bernhard F.W. Gschaider swak4Foam for programmers 49/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Conditional writing with writeIf

• Function objects starting with writeIf offer the possibility to
very flexibly write additional timesteps

• Acts in phases
1 Does nothing and waits for a trigger
2 Trigger "fired" starts writing until another condition is fulfilled

• number of steps, general condition . . .
• can also write N stored timesteps

3 After writing offers a "cooldown" period
• So it doesn’t start writing immediately

4 Go back to step 1

• Possible application "If lagrangian particles impinge the fluid
surface write the last 3 time-steps and the next 10 timesteps.
Then wait 0.5s before recording the next incident"

Bernhard F.W. Gschaider swak4Foam for programmers 50/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Multiple function objects that store stuff

• You’ve seen that there are multiple function objects that can
save the last N time-steps

• If you use more than one of these swak4Foam notices these
• Fails
• User has to set a special parameter to acknowledge "I know

that I’m wasting memory"

Bernhard F.W. Gschaider swak4Foam for programmers 51/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Function object list proxy

• There is a number of function objects in swak that contain other
function objects

• If these function objects are executed then they execute that list
• Usually these have two entries:

functions a list/dictionary that specifies the function objects
"inside". Works like the regular entry in controlDict

readDuringConstruction Should functions be read at the start or
when the function object is executed the first time

• If false it is possible that functions are never
constructed. This is sometimes the desired effect

• Does not work for all function objects because some function objects
do not want to be contained

Bernhard F.W. Gschaider swak4Foam for programmers 52/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Conditional function objects

• These usually start with executeIf
• Have a condition that depends on the concrete function-object
• If that condition is true the functions are executed
• If false an optional list else is executed

• Applications:
• Function objects should only be executed under certain conditions

("Only execute this sample after the 200th iteration")
• Function objects should be only executed under certain conditions (for

instance: only with a certain solver, but not when initializing with
potentialFoam) but you don’t want to comment out

• Example: executeIfExecutableFits only executes if the name of
the program fits a pattern (the potentialFoam-example)

• Guesses from the audience: what might
executeIfEnvironmentVariable, executeIfParallelSerial,
executeIfSwakExpression do?

• There are more

Bernhard F.W. Gschaider swak4Foam for programmers 53/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

dynamicFunctionObjectList

• If you like Meta-programming then you’ll love this
• If you don’t know what Meta-programming is: see the "Pearls

before swine"-cartoon above and act accordingly
• What it does:

• Gets a text from a "provider"
• Constructs the functions from that text

• Providers can be:
• a regular dictionary file
• a command (for instance a shell-script)
• a Python-program

• Applications:
• Construct function objects from information that is only

available when the run starts
• Construct multiple similar function objects (For instance:

construct 20 sample-planes with evaluations on it. You don’t
want to do that by hand)

Bernhard F.W. Gschaider swak4Foam for programmers 54/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Stored variables
Global variables
More obscure variable types
"Programming" function objects

Time-manipulation

• There are function objects that allow manipulating the time
• They start with

setDeltaT sets the time-step to a different value
setEndTime set the endTime to a different value than in the

controlDict
• Application: implement dynamic time-stepping for solvers that

don’t support it
• Or be more flexible about it: "Valve opens in 10−3s. Lets

prepare by decreasing the time-step"
• Does some things that might be considered illegal

• Possible conflicts with regular adaptive time-steppin
• Currently only Python-variants implemented

• And one where ∆t can be set using a time-line file

Bernhard F.W. Gschaider swak4Foam for programmers 55/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 56/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 57/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Python-integration in swak4Foam

• Until now we heard multiple time "there is also a
Python-implementation" for it

• That is part of the Python-integration
• So what is the Python-integration?

• It is the library libwakPythonIntegration.so
• And what does that do?

• Provides a number of function objects that integrate a
Python-interpreter

• Injects data into the Python-namespace
• Executes python-programs

• Can use (almost) any Python-library (GUI-stuff for instance is
problematic)

• Puts python variables into the swak-namespace
• Python-integration is one of the few things completely

documented in the swak4Foam Incomplete Reference Guide
that comes with the sources

Bernhard F.W. Gschaider swak4Foam for programmers 58/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Why Python?

• Just some reasons against it
• It is generally slower than C++
• It can’t access all the stuff C++ can

• But pythonFlu can. What is pythonFlu? The rat says
"Google it!"

• Some reasons for it
• It is easier than C++
• There are a lot of libraries for it

• Numerical
• Databases
• Web-stuff
• if the library is installed on your system then you don’t have to

worry about compiling, linking etc
• Run-time diagnostics is fun
• Our friend ParaView uses it too

• And the best reason:
• It is named after Monty Python

Bernhard F.W. Gschaider swak4Foam for programmers 59/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Other language integrations

• Currently none available
• Other languages that allow being embedded into a C-program

are possible
• Lua
• Perl
• Ruby
• . . .

• But unless there is a need it probably won’t happen
• Exchange with swak would have to be generalized

• So that integrations don’t have to do everything from scratch
• To have some consistency in the interface

Bernhard F.W. Gschaider swak4Foam for programmers 60/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

What is python

• Is a programming language
• interpreted (not compiled)
• object-oriented

• but pragmatic about it

• It is widely used
• And integrated as the scripting language in a number of

applications

• Comes with a large standard-library
• Many third-party libraries available

• Most interestingly for numerical purposes
• Mostly based on numpy

• But also plotting
• Many C++/C-packages have Python-bindings

• Allows using them as if they were Python-packages

Bernhard F.W. Gschaider swak4Foam for programmers 61/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

3 things you need to know about Python

. . . to understand the examples (if you only know C++)
1 Indentation does the same thing { and } do for C++
2 [] is a list and also the access operator
3 {} creates dictionaries
4 self is the same as this for C++ (the object itself)

OK. That’s 4.
I didn’t expect the Spanish Inquisition. "Nobody expects . . . ".
If you don’t understand it: Google monty python spanish
inquisition. First YouTube-link

Bernhard F.W. Gschaider swak4Foam for programmers 62/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

What is numpy

• It is the de-facto standard for handling numerical data in Python
• Advanced libraries like scipy based on it

• The main feature is that it makes C-arrays look like Python-lists
• "Vectorizes" operations on them (executes the loop in C)

• That way they are almost as fast as C

This is slow
Assuming that a, b and c are numpy-arrays of equal length
for i in range(len(a)):

a[i]=b[i]+c[i]

This is fast

a=b+c

And also easy to read

Bernhard F.W. Gschaider swak4Foam for programmers 63/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Implementation of the Python-integration

• The first function-object that uses Python initializes the
interpreter

• Every other function object uses that but gets a separate
work-space

• Technical reason: there can only be one interpreter per process
• Separate workspaces means: no interference (what you see is

yours)
• Library imports are shared

• The namespace "lives" through the whole lifetime of the
function-object:

• A variable set at one time-step still has the same value at the
next

• Control is handed over to the Python-interpreter at the
"usual" times

• start, execute, write, end

Bernhard F.W. Gschaider swak4Foam for programmers 64/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Before the Python-code - variables

• swak injects variables into the Python-namespace that might
be of interest (for complete list see Reference Guide)

runTime the current simulation time as a float
timeName name of the current time as a string

caseDir path to the case directory
parRun boolean that says "is this a parallel run?"

• There are also two functions that create directories for
time-dependent data (with slightly different use-cases):
dataFile(fname) creates a directory

<case>/<name>_data/<time>.
timeDataFile(fname) creates a directory

<case>/<time>/<name>_data.

Bernhard F.W. Gschaider swak4Foam for programmers 65/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Before the Python-code - getting data from swak

• if a list swakToPythonNamespaces is specified then all
variables in these namespaces are injected into the
Python-namespace

• These rules apply:
• Single values are copied into Python (a single scalar becomes a

single value)
• Fields are projected as numpy-array

• by-reference: no data is copied. The numpy-array just "points"
to the OpenFOAM-data

• scalarField becomes a 1D-array
• vectorField of length N becomes a N × 3-array
• tensorField a N-array
• what about symmTensorField?
• Fields have convenience-attibutes like .x for the first column

Bernhard F.W. Gschaider swak4Foam for programmers 66/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Consequence of by-reference

• Changing single values affects the global variable
• Sometimes that is what is wanted

• Overwriting a global variable a is a bit counter intuitive
• a=1 does not reset the whole field to 1. It sets a to a new

variable with the single value 1
• Global variable a is still alive and keeps its value

• Slice operation a[:]=1 resets the global variable
• This makes perfect sense if you understand how numpy

handles things
• Same for b.x: to clear it "slice": b.x[:]=0

Bernhard F.W. Gschaider swak4Foam for programmers 67/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Predefined imports

There is a number of options on the swak-side that import certain
libraries (the user code then doesn’t have to do it)
useNumpy automatically use numpy. Without it only single

values from swak are handled
useIPython for the interactive interpreter use ipython (highly

recommended)
importLibs Optional dictionary with libraries to import at start.

• A single value scipy means import scipy
• A key/value-pair stat scipy.stat means
import scipy.stat as stat

Importing libraries that way may help working around
problems with libraries behaving strangely when
imported from user-code

Bernhard F.W. Gschaider swak4Foam for programmers 68/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Options for interactivity

• One of the nice things about Python is the interactive shell
• Try out things. If they work copy them to your program
• With ipython even easier

• The relevant options are
interactiveAfterExecute After the user-code has executed

the user is dropped to an interactive shell
(ipython if specified).

• This is useful during the development of
user-code to try things out

• Shell is ended with Ctrl-D. OpenFOAM
continues

• Careful: Ctrl-C will end the whole run
interactiveAfterException If an exception is raised by the

Python-code the user gets an interactive shell
• Very useful for debugging user-code

Bernhard F.W. Gschaider swak4Foam for programmers 69/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Parallel support

• Parallel support of the Python-integration is minimal
• Advance stuff would have to be handled by the user code with the

library mpi4py

• In a parallel run it checks a number of options to see what is
supported:
isParallelized run fails if this is unset

• tells swak: "User thought about it"

parallelMasterOnly Execute the Python-code only on the
Master-processor

• Things like this work without problem in parallel

if runTime >3:
val=1

else:
val=0

• This probably won’t (or won’t give the expected result)

maxP=max(pressure)

Bernhard F.W. Gschaider swak4Foam for programmers 70/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Specifying user-code

• Depending on the function-object different Python-snipplets
have to be specified

• A snipplet start can be specified in two ways:
startCode string with the actual Python-code

• use for trivial code (or empty string)

startFile string with a file that has the Python-code
• These options are mutual exclusive
• The snipplets are executed

• Some function-objects (setDeltaTWithPython for instance)
expect a value to be returned

• Snipplet must do so with return

Bernhard F.W. Gschaider swak4Foam for programmers 71/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Pushing values to global variables

• Two options specify which data is transferred to OpenFOAM:
pythonToSwakNamespace one global namespace to which

the values are transferred
pythonToSwakVariables a list of variables that are going to

be transferred
• Values are transferred in this way:
single number transferred as a single scalae
3 element list becomes a vector
1D numpy array becomes a scalarField of size N (values

are copied)
N × 3 array becomes a vectorField of size N

• N × 9 and N × 6 become tensorField or
symmTensorField

Bernhard F.W. Gschaider swak4Foam for programmers 72/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 73/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

The case

• Take the simpleFoam tutorial pitzDaily
• Enhance it with some Python

Bernhard F.W. Gschaider swak4Foam for programmers 74/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

What we’re trying to do

• The assumption is that the pressure between inlet and outlet
drops linearly

• Don’t laugh. Please!

• Using simulated pressure values and positions python should
calculate k and d for the approximation

p(x) = kx + d

• Using these values swak calculates a field pressureLinear
with the theoretical values for post-processing

• As a bonus Python should generate pictures
• Comparing the fit to the date
• Evolution of k and d as a function of the iterations

Bernhard F.W. Gschaider swak4Foam for programmers 75/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Preparing the case

• In real life we change into the ready-made case

cd $HOME/swakProgramming/calcDrop/pitzDailyWithPython

• And set it up

blockMesh

• Lets pretend we don’t already have the case

Using pyFoam

> cd $HOME/swakProgramming/calcDrop
> pyFoamCloneCase.py $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily <brk>

<cont> pitzDailyWithPyFoam
> cd pitzDailyWithPyFoam
> pyFoamPrepareCase.py .

Bernhard F.W. Gschaider swak4Foam for programmers 76/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Getting the function-objects

• 2 libraries have all the function-objects we need
• Not really. But other libraries are loaded as dependencies

controlDict

libs (
"libswakFunctionObjects.so"
"libswakPythonIntegration.so"

);

functions {
}

Bernhard F.W. Gschaider swak4Foam for programmers 77/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Setting up the field pressureLinear

• Load the field into memory in the beginning

controlDict

functions {
linearPressure {

type readAndUpdateFields;
outputControl timeStep;
outputInterval 1;
fields (

pressureLinear
);
autowrite true;

}
}

Bernhard F.W. Gschaider swak4Foam for programmers 78/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

The field-file

• For the read-part readAndUpdateFields needs a field-file in
0

• Create by copying 0/p and then adapting it

0/pressureLinear

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

inlet
{

type zeroGradient;
}

outlet
{

type zeroGradient;
}

upperWall
{

type zeroGradient;
}

lowerWall
{

type zeroGradient;
}

frontAndBack
{

type empty;
}

}

Bernhard F.W. Gschaider swak4Foam for programmers 79/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Don’t execute every time

• Executing the Python-program at every iteration would slow
the program up

• And fill the disk with unused pictures

• So we ask to execute it only every 10 timesteps

controlDict after linearPressure

every10Steps {
type executeIfPython;
outputControlMode timeStep;
outputInterval 1;
readDuringConstruction true;
useNumpy false;
conditionCode "return␣(int(runTime)␣%␣10)==0";
initCode "";

functions {
}

}

Bernhard F.W. Gschaider swak4Foam for programmers 80/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Exercise: change the condition

• During the first iterations the pressure oscillates
• Results are useless

• Adapt the condition to say "Every 10 timesteps after iteration
50"

Bernhard F.W. Gschaider swak4Foam for programmers 81/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Get data from swak

• Get ~u, ~x and p into global variables

controlDict in every10Steps

functions {
toGlobalNamespace {

type calculateGlobalVariables;
outputControl timeStep;
outputInterval 1;

valueType internalField;
toGlobalNamespace fieldData;
toGlobalVariables (

positions
velocity
pressure

);
variables (

"velocity=U;"
"positions=pos();"
"pressure=p;"

);
}

}

Bernhard F.W. Gschaider swak4Foam for programmers 82/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

The central function object

• This is the central function object
• Because it is so important we split it into three parts
• First the administrative stuff

controlDict after toGlobalNamespace

calculatePressureFit {
type pythonIntegration;
useIPython true;
useNumpy true;
importLibs {

matplotlib;
stats scipy.stats;

}
parallelMasterOnly false;
isParallelized false;
interactiveAfterException true;
interactiveAfterExecute false;

Bernhard F.W. Gschaider swak4Foam for programmers 83/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Part 2: Specifying the Python-sniplets

• This specifies which code to execute during startup, each
timestep, write etc

• $FOAM_CASE is set to the current case
• By specifying the file names like this you make sure the

Python-files are always found

calculatePressureFit continued

startFile "$FOAM_CASE/system/calcPressureStart.py";
writeFile "$FOAM_CASE/system/calcPressureWrite.py";
executeFile "$FOAM_CASE/system/calcPressureExecute.py";
endFile "$FOAM_CASE/system/calcPressureEnd.py";

Bernhard F.W. Gschaider swak4Foam for programmers 84/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Specifying data exchange

• The global variables go in
• Python writes to global scope fieldData

• A complete field pLinear
• The fitted parameters k (slope) and d (offset)

calculatePressureFit finished

swakToPythonNamespaces (
fieldData

);
pythonToSwakNamespace fromPython;
pythonToSwakVariables (

pLinear
slope
offset

);
}

Bernhard F.W. Gschaider swak4Foam for programmers 85/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Setting the calculated field

• We now copy the theoretical pressure values pLinear Python
calculated into pressureLinear

controlDict after calculatePressureFit

writeLinear {
type manipulateField;
outputControl timeStep;
outputInterval 1;
fieldName pressureLinear;
mask "true";

expression "pLinear";

globalScopes (
fromPython

);
}

Bernhard F.W. Gschaider swak4Foam for programmers 86/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Alternate pressure field

• This is redundant
• Only demonstrates that we could also use the two parameters

to calculate the field in swak4Foam

controlDict after writeLinear

writeLinear2 {
$writeLinear;
type expressionField;
autowrite true;
expression "pos().x*slope+offset";
fieldName pressureLinear2;

}

Bernhard F.W. Gschaider swak4Foam for programmers 87/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Python code executed in the beginning

• Imports the plotting library
• Sets up variables that collect the evolution of parameters
• Initializes the variables to be exported

• Necessary because they are always exported to swak
• pLinear becomes field of size of pressure

system/calcPressureStart.py

print "Python:␣start"

from matplotlib import pyplot

times =[]
slopes =[]
offsets =[]

slope=0
offset =0

pLinear =0* pressure

Bernhard F.W. Gschaider swak4Foam for programmers 88/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Executed every time

• The actual work is done by stats.linregress
• pLinear is calculated with a simple one-liner
• slope and offset are set from r and appended to the

time-lists

system/calcPressureExecute.py

print "Python:␣Execute"

times.append(runTime)
r=stats.linregress(positions.x,pressure)
slopes.append(r[0])
offsets.append(r[1])

pLinear=positions.x*r[0]+r[1]

print pLinear
slope=r[0]
offset=r[1]

Bernhard F.W. Gschaider swak4Foam for programmers 89/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Exercise

• The result of scipy.stats.linregress has more than two
values

• Find out what the other values are and which one might
describe the accuracy of the linear fit

• How to find that information: What would the rat do?

• Adapt Python-codes to print this accuracy
• Print it as a function of time

Bernhard F.W. Gschaider swak4Foam for programmers 90/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Write pictures of the fit

• This code is executed whenever OpenFOAM writes a time-step
to disk

• The actual code is matplotlib-specific
• To get that information even the goat would Google

system/calcPressureWrite.py

print "Python:␣write"

f=pyplot.figure ()
pyplot.title("Pressure␣drop␣at␣t=%f" % runTime)
pyplot.xlabel(’x-direction␣[m]’)
pyplot.ylabel(’pressure␣[Pa]’)
data=pyplot.plot(positions.x,pressure ,’b.’,label="Data")
xLine=numpy.array([min(positions.x),max(positions.x)])
line=pyplot.plot(xLine ,r[1]+r[0]* xLine ,’r’,label="Fit")
a=line [0]. get_axes ()
pyplot.text (0.1 ,0.1,"p␣=␣%f␣*␣x␣+␣%f" % r[:2], transform=a.transAxes)
pyplot.legend ()
pyplot.savefig("pressuredrop_t =%f.png" % runTime)

Bernhard F.W. Gschaider swak4Foam for programmers 91/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Picture of a fit

Bernhard F.W. Gschaider swak4Foam for programmers 92/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Plotting evolution in the end

system/calcPressureEnd.py

• This is only boring matplotlib-code

def makePlot ():
pyplot.figure ()
pyplot.xlabel("Time␣[s]")
pyplot.subplot (2,1,1)
pyplot.title("Development␣of␣parameters␣over␣time")
pyplot.plot(times ,offsets ,"r")
pyplot.ylabel("Offset␣[Pa]")
pyplot.subplot (2,1,2)
pyplot.plot(times ,slopes ,"g")
pyplot.ylabel("Slope␣[Pa/m]")
pyplot.xlabel("Time␣[s]")

makePlot ()
pyplot.savefig("ParameterDevelopment.png")
try:

pyplot.xkcd()
makePlot ()
pyplot.savefig("ParameterDevelopmentXKCD.png")

except AttributeError:
print "No␣XKCD"

Bernhard F.W. Gschaider swak4Foam for programmers 93/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Development of the parameters

Bernhard F.W. Gschaider swak4Foam for programmers 94/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

XKCD-style

You don’t know
XKCD? G____ it!

Bernhard F.W. Gschaider swak4Foam for programmers 95/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Running the solver

• Now it is time to execute the solver

Excerpts from the solver output

> simpleFoam
<<snip>>
DILUPBiCG: Solving for epsilon , Initial residual = 0.0160891 , Final <brk>

<cont> residual = 0.00103827 , No Iterations 1
DILUPBiCG: Solving for k, Initial residual = 0.0154531 , Final residual = <brk>

<cont> 0.000852423 , No Iterations 1
ExecutionTime = 10.01 s ClockTime = 87 s

Python: Execute
[5.69550741 5.77655262 5.8543598 ..., 21.23283186 21.48525816

21.74750274]
Python: write
Manipulated field pressureLinear in 12225 cells with the expression "<brk>

<cont> pLinear"
Manipulated field pressureLinear not rewritten. Set ’writeManipulated ’
Creating expression field pressureLinear2 ... type:volScalarField
Time = 61

DILUPBiCG: Solving for Ux, Initial residual = 0.00452582 , Final residual =<brk>
<cont> 0.00019914 , No Iterations 1

Bernhard F.W. Gschaider swak4Foam for programmers 96/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

The "theory" is far off

Bernhard F.W. Gschaider swak4Foam for programmers 97/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Exercise: different fit

• Doesn’t look like a linear drop at all
• One solution: let the simulation converge
• But in our desperation we want to use a higher-order fit
• The function numpy.polyfit finds a polynomial fitting that

data
• Try fitting the data with a cubic polynomial

• Get the fit "outside" and visualize it

Bernhard F.W. Gschaider swak4Foam for programmers 98/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Interactivity

• Lets have a look at the interactive possibilities by provoking an error
• In system/calcPressureExecute.py replace print pLinear with print boo

Executing again

> simpleFoam
<<snip>>
ExecutionTime = 2.73 s ClockTime = 13 s

Python: Execute
Traceback (most recent call last):

File "<string >", line 12, in <module >
NameError: name ’foo ’ is not defined
Python Exception
Got an exception for "# Execute often\
<<snip>>
" now you can interact.
Python 2.7.7 (default , Jun 17 2014, 23:22:44)
Type "copyright", "credits" or "license" for more information.

IPython 2.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython ’s features.
%quickref -> Quick reference.
help -> Python ’s own help system.
object? -> Details about ’object ’, use ’object??’ for extra details.

Exception handling

In [1]:

Bernhard F.W. Gschaider swak4Foam for programmers 99/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Example of an interactive session

• Examining values and getting help
In [1]: print r
(2717.674697110564 , -670.92006669301622 , 0.93911994174592917 , 0.0, <brk>

<cont> 8.9934716158273247)

In [2]: min(pressure)
Out [2]: -986.23933174489468

In [3]: velocity.shape
Out [3]: (12225 , 3)

In [4]: stats.linregress?
Type: function
String form: <function linregress at 0x114286ed8 >
File: /opt/local/Library/Frameworks/Python.framework/Versions /2.7/<brk>

<cont> lib/python2 .7/site -packages/scipy/stats/stats.py
Definition: stats.linregress(x, y=None)
Docstring:
Calculate a regression line

This computes a least -squares regression for two sets of measurements.

Parameters

x, y : array_like

two sets of measurements. Both arrays should have the same length.
If only x is given (and y=None), then it must be a two -dimensional
array where one dimension has length 2. The two sets of measurements
are then found by splitting the array along the length -2 dimension.

Bernhard F.W. Gschaider swak4Foam for programmers 100/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

General
Approximate the pressure drop

Alternate way of using Python

• Not everybody wants to use Python in there production runs
• Performance considerations
• Not possible because of missing libraries

• Ask your admin to install matplotlib with all dependencies
on the cluster. If you do: please send me a copy of the mails
exchanged

• For such cases there is the utility funkyPythonPostproc
• Allows using Python on data stored on disc
• Uses the usual function-objects to get data to and from python

• The utility is also nice to develop scripts
• Utility can even be used without python

• Just for applying function objects

Bernhard F.W. Gschaider swak4Foam for programmers 101/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 102/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 103/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Functionality needed by some

• Functionality that might be essential to some is not needed by
most

• But it would be nice to have it on demand
• In swak this means:

• User X says "For my work it would be nice to have this
function in swak so that I can use it in swakExpression and
elsewhere"

• Problem is: not that many people need that function. So it
would bloat the swak-core

• Or: "I want to use swak to test our in-house combustion code"

Bernhard F.W. Gschaider swak4Foam for programmers 104/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

The solution: function plugins

• A library is loaded
• Registers new functions

• Now these functions can be used like "regular" functions in
swak-expressions

• Technically these plugin-functions are C++-classes
• Implement an interface that tells the parser

• What parameters are required
• What the function returns
• Gets the parameter values from the parser
• Calculates the result and sends it to the parser

• We will discuss an example plugin here
• There will be a lot of hand-waving

• It doesn’t make sense to wade through pages of C++-code
• The important parts will be pointed out

Bernhard F.W. Gschaider swak4Foam for programmers 105/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

C++ if you’ve never used it before

• That would be a presentation of its own
• Just relax and trust me

Bernhard F.W. Gschaider swak4Foam for programmers 106/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 107/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

The Game of life

• If you don’t know it: have a look at
http://en.wikipedia.org/wiki/Conway’s_Game_of_Life
for an explanation

• The Game of Life was developed/invented/discovered by John
Conway

• It is a cellular automaton on a 2-dimensional grid
• Each cell has 8 neighbors
• Each cell is either "alive" or "dead"
• Cells "live" in the next time-step if currently it is

alive and 2 or 3 of its neighbors live
dead and exactly 3 neighbors live

• These simple rules evolve in surprisingly complex patterns

Bernhard F.W. Gschaider swak4Foam for programmers 108/153

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Our implementation

• We want to write a function that
• Gets a scalar field
• Values > 1

2 are assumed to be "alive"
• Neighbors of a cell are used as neighbors

• Current implementation only knows neighbors that share a face
• To correctly implement Conway’s Game we’d also need neighbors that

share an edge
• Returns a field with dead (value 0) and live (value 1) cells
• Boundary treatments (patch faces are treated as "neighbors"):

Coupled patches get value from cell on the other side
Symmetry get the value of the cell itself

Empty not counted as a neighbor
all other dead

• Why would we need such function
• For nothing really. But having a GoL is cool
• As a pseudo-random distribution generator for complex initial

conditions

Bernhard F.W. Gschaider swak4Foam for programmers 109/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Declaring the class

• Subclass of FieldValuePluginFunction to be used on the
parser for internalField

• Different subclasses for patch and other parsers

gameOfLifeFunction.H

#ifndef gameOfLifeFunction_H
#define gameOfLifeFunction_H

#include "FieldValuePluginFunction.H"

namespace Foam
{

class gameOfLifeFunction
:

public FieldValuePluginFunction
{

//- Disallow default bitwise assignment
void operator =(const gameOfLifeFunction &);

gameOfLifeFunction(const gameOfLifeFunction &);

Bernhard F.W. Gschaider swak4Foam for programmers 110/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

The constructor

• This is the constructor that needs to be implemented to be
able to register the function

gameOfLifeFunction.H

// the actual function
gameOfLifeFunction(

const FieldValueExpressionDriver &parentDriver ,
const word &name

);

Bernhard F.W. Gschaider swak4Foam for programmers 111/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Registering the function

• For the parser to be able to use it it must be registered with
the runtime-selection table

• This is a standard-technique in OpenFOAM

• Here we set the name of the function to be gameOfLife_step

gameOfLifeFunction.C

defineTypeNameAndDebug(gameOfLifeFunction ,0);
addNamedToRunTimeSelectionTable(FieldValuePluginFunction , <brk>

<cont> gameOfLifeFunction , name , gameOfLife_step);

Bernhard F.W. Gschaider swak4Foam for programmers 112/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Constructor of the parent class

• In this constructor the function declares its "signature"
• How to be called, what it returns

• The parameters of the constructor are
1 The actual driver (the class in charge of evaluation)
2 The name of the function
3 Type of the return value

• Be sure to really return an object of that type

4 A string with the specification of the parameters of the
function

Bernhard F.W. Gschaider swak4Foam for programmers 113/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Parameter specification string

• The parameters in the specification string are separated by ,
• Each parameter specification consists of three parts

1 Descriptive name of the parameter (for the user)
2 The parser that swak should use to parse the parameter

• Any swak-parser is possible (internalField, patch, etc)
• Yes: parameters can be full swak-expressions

3 The type that the parameter is supposed to be
• volScalarField for instance

Bernhard F.W. Gschaider swak4Foam for programmers 114/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Restriction: no function overloading

• In C++ you can have functions with the same names but
different parameters

• Return type is determined by the parameters
• For instance: max(a) in OpenFOAM

• If a is a vectorField then the return type is a vector
• For a scalarField it is a scalar

• This would be too complicate to implement in swak
• And there are not that many uses for it

• As a workaround in our example there would have to be two
functions

• maxVector and
• maxScalar

Bernhard F.W. Gschaider swak4Foam for programmers 115/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Our constructor

• Our constructor looks like this
• Gets a scalar. Returns a scalar

gameOfLifeFunction.C

gameOfLifeFunction :: gameOfLifeFunction(
const FieldValueExpressionDriver &parentDriver ,
const word &name

):
FieldValuePluginFunction(

parentDriver ,
name ,
word("volScalarField"),
string("oldState␣internalField␣volScalarField")

)
{

setConwayNumbers ();
}

Bernhard F.W. Gschaider swak4Foam for programmers 116/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

After construction

• After construction of the function the driver continues parsing
the input string

• Tries to extract the parameters according to the specification
we provided in the constructor

• This involves calling another parser
• This may lead to "stacked" error messages if the sub-parser

fails
• If the parser has a parameter of the correct type he hands it to

the function
• via a setArgument-method
• the function is responsible for storing that value

• After all parameters are parsed the driver ask the function to
do the actual evaluation

• by calling the doEvaluation-method
• that triggers the actual evaluation
• the ExpressionResult is set with the result-method

• That is the "function return"
Bernhard F.W. Gschaider swak4Foam for programmers 117/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

The missing parts of the interface

• There are other parts, but they are application specific
• oldState_ and doStep are the only ones that interest us

gameOfLifeFunction.H

autoPtr <volScalarField > oldState_;

protected:

autoPtr <volScalarField > doStep(const volScalarField &old);

virtual void setArgument(
label index ,
const string &content ,
const CommonValueExpressionDriver &driver

);

void doEvaluation ();

Bernhard F.W. Gschaider swak4Foam for programmers 118/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Setting the argument

• The argument index helps distinguishing multiple arguments of the same type
• content is there for technical reasons

gameOfLifeFunction.C

void gameOfLifeFunction :: setArgument(
label index ,
const string &content ,
const CommonValueExpressionDriver &driver

) {
if(index ==0) {

oldState_.set(
new volScalarField(

dynamic_cast <const FieldValueExpressionDriver &>(
driver

).getResult <volScalarField >()
)

);
} else {

FatalErrorIn("gameOfLifeFunction :: setArgument("
"label␣index ,"
"const␣string␣&content ,"
"const␣CommonValueExpressionDriver␣&driver)")

<< "This␣should␣not␣happen.␣Expecting␣index ==0.␣Got␣" << index
<< endl
<< exit(FatalError);

}
}

Bernhard F.W. Gschaider swak4Foam for programmers 119/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Evaluating the function and setting the result

• This is where the actual work happens
• For the actual implementation of doStep see the sources

• We’re already behind schedule and it is "standard"
OpenFOAM-programming

• setObjectResult sets the ExpressionResult with the
volScalarField returned by doStep

• This type must be the same promised in the "signature"

gameOfLifeFunction.C

void gameOfLifeFunction :: doEvaluation ()
{

result ().setObjectResult(doStep(oldState ()));
}

Bernhard F.W. Gschaider swak4Foam for programmers 120/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Locating the swak-sources

• For compiling the function-plugin it must have the sources
• There is no standard-location for that

• With our packages it is in $FOAM_SRC/swak4Foam but this is
not the norm

• Usually the sources are in the user directory
• By convention Make/options looks for them in
$SWAK4FOAM_SRC

• This is better than hardcoding a path and when you move the
sources you’ve got to change that

• Make sure that SWAK4FOAM_SRC points to the correct location

Bernhard F.W. Gschaider swak4Foam for programmers 121/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Compile the plugin and go to the case

• Go to the sources, set the environment, compile
• Pretty easy

On the shell

> cd $HOME/swakProgramming/gameOfLife/gameOfLifeFunctionPlugin
> export SWAK4FOAM_SRC=$FOAM_SRC/swak4Foam
> wmake libso
<<snip>>
> ls $FOAM_USER_LIBBIN
libswakGameOfLifeFunctionPlugin.so
> cd ../ gameOfDamBreak

Bernhard F.W. Gschaider swak4Foam for programmers 122/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 123/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

The case gameOfDamBreak

• This is the standard damBreak-case
• Slightly modified: symmetry on the left

• Set up to be used with pyFoamPrepareCase.py
• First executes setFields with the "usual" initial condition
• Then calls funkySetFields

caseSetup.sh

#! /usr/bin/env bash

setFields

funkySetFields -time -0 -expression "gameOfLife_step(alpha1)" -field alpha1<brk>
<cont> -keepPatches

Bernhard F.W. Gschaider swak4Foam for programmers 124/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Setting up the case

• We set up th case with

pyFoamPrepareCase.py .

• The most interesting part about the output is where swak
reports the available plugin functions

• This is the "online help" for us
• The signature is constructed from the information we provided

in the constructor

"Loaded␣plugin␣functions␣for␣’FieldValueExpressionDriver ’:"
gameOfLife_step:

"volScalarField␣gameOfLife_step(internalField/volScalarField␣oldState)"

swak4Foam: Setting default mesh
Setting 2268 of 2268 cells
Writing to "alpha1"

End

Bernhard F.W. Gschaider swak4Foam for programmers 125/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Playing around with the function

• We create some more fields by applying the function
• And make a mistake

> funkySetFields -time -0 -expression "gameOfLife_step(gameOfLife_step(alpha1))" -<brk>
<cont> field alpha2 -create

<< snip >>
> funkySetFields -time -0 -expression "gameOfLife_step(gameOfLife_step(random () -0.25)<brk>

<cont> +pos().y)" -field alpha3 -create
<< snip >>
--> FOAM FATAL ERROR:
Parser Error for driver FieldValueExpressionDriver at "1.1 -6" :"field random not <brk>

<cont> existing or of wrong type"
"random () -0.25)+pos().y)"

^^^^^^
--|

Context of the error:

- Driver constructed from scratch
Evaluating expression "gameOfLife_step(gameOfLife_step(random () -0.25)+pos().y)"
Plugin Function "gameOfLife_step" Substring "gameOfLife_step(random () -0.25)+pos().y<brk>

<cont>)"
- Driver constructed from scratch

Evaluating expression "gameOfLife_step(random () -0.25)+pos().y)"
Plugin Function "gameOfLife_step" Substring "random () -0.25)+pos().y)"

- Driver constructed from scratch
Evaluating expression "random () -0.25)+pos().y)"

> funkySetFields -time -0 -expression "gameOfLife_step(gameOfLife_step(rand() -0.25)+<brk>
<cont> pos().y)" -field alpha3 -create

Bernhard F.W. Gschaider swak4Foam for programmers 126/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Boundary of the original

Bernhard F.W. Gschaider swak4Foam for programmers 127/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Seems like this is a stable configuration

Bernhard F.W. Gschaider swak4Foam for programmers 128/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Interesting but still boring

Bernhard F.W. Gschaider swak4Foam for programmers 129/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 130/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Additional functions

• To test the evolution of large numbers of iterations can be
tedious

• And also memory-consuming if gameOfLife_step calls itself
10 times

• One project:
• Write a function that calls that allows specifying "evolve the

system N times"
• The other project:

• Because we didn’t implement the neighbors properly the result
is boring. We want a function that allows us to specify a
"rules-string"

Bernhard F.W. Gschaider swak4Foam for programmers 131/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Arguments not parsed by swak

• The additional arguments for the new functions have one thing
in common:

• They are not swak-expression
• Integer for one of them
• A string for the other

• In such cases in the variable specification we specify a
primitive parser

• Type label for the integer
• Type string for the string

• Additional primitive types available are
• word:string without quotes)
• scalar: floating point value

• We have to provide special setArgument methods for these

Bernhard F.W. Gschaider swak4Foam for programmers 132/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Inheriting from the original function

• Both functions should inherit from the original gameOfLifeFunction
• So that functionality only has to be specified once

• A new constructor has to be specified in gameOfLifeFunction so
that the sub-classes my get their argument specifications to the
FieldValuePluginFunction

gameOfLifeFunction.C

gameOfLifeFunction :: gameOfLifeFunction(
const FieldValueExpressionDriver &parentDriver ,
const word &name ,
const string &arguments

):
FieldValuePluginFunction(

parentDriver ,
name ,
word("volScalarField"),
arguments

)
{

setConwayNumbers ();
}

Bernhard F.W. Gschaider swak4Foam for programmers 133/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Constructor for the N-times function

• This class calls the new constructor
• With an additional argument specified

• Needs an additional variable nIterations_ to store N

gameOfLifeNFunction.C

gameOfLifeNFunction :: gameOfLifeNFunction(
const FieldValueExpressionDriver &parentDriver ,
const word &name

):
gameOfLifeFunction(

parentDriver ,
name ,
string(

"oldState␣internalField␣volScalarField ,"
"nr_of_iterations␣primitive␣label"

)
),
nIterations_ (-1)

{
}

Bernhard F.W. Gschaider swak4Foam for programmers 134/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Getting the scalar argument

• We need to provide a setArgument for integers
• Sanity-checking is optional but recommended

gameOfLifeNFunction.C

void gameOfLifeNFunction :: setArgument(
label index ,
const label &value

) {
if(index ==1) {

nIterations_=value;
if(value <0) {

FatalErrorIn("gameOfLifeNFunction :: setArgument("
"label␣index ,"
"const␣label␣&value)")

<< "Got␣iteration␣number␣" << value
<< ".␣Should␣be␣ >=0"
<< endl
<< exit(FatalError);

}
} else {

FatalErrorIn("gameOfLifeNFunction :: setArgument("
"label␣index ,"
"const␣label␣&value)")

<< "This␣should␣not␣happen.␣Expecting␣index ==1.␣Got␣" << index
<< endl
<< exit(FatalError);

}
}

Bernhard F.W. Gschaider swak4Foam for programmers 135/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Calculating N steps

• Just loop

gameOfLifeNFunction.C

void gameOfLifeNFunction :: doEvaluation ()
{

autoPtr <volScalarField > r(
new volScalarField(oldState ())

);

for(label i=0;i<nIterations_;i++) {
r=doStep(r());

}

result ().setObjectResult(r);
}

Bernhard F.W. Gschaider swak4Foam for programmers 136/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

The rule string

• Convention for the class of finite automate that are similar to
the original game of life is a string of the form
survive/birth that specifies which cells live in the next step

• survive and birth are sequences of digits
• If the cell is alive and the number of neighbors is one of the

digits in survive the cell survives
• If the cell is dead and the neighbor-number is in birth then

the cell lives

• The original Conway-game is specified by the string 23/3
• Our function should use such a string

Bernhard F.W. Gschaider swak4Foam for programmers 137/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Specification of the Rules-function

gameOfLifeRulesFunction.C

gameOfLifeRulesFunction :: gameOfLifeRulesFunction(
const FieldValueExpressionDriver &parentDriver ,
const word &name

):
gameOfLifeFunction(

parentDriver ,
name ,
string(

"oldState␣internalField␣volScalarField ,"
"surviveSlashBirth␣primitive␣string"

)
)

{
}

Bernhard F.W. Gschaider swak4Foam for programmers 138/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Notes on the further implementation of the rules
function

• setArguments parses the rules-string
• Sets the rule in the parent-class
• Therefor no need to store the rule-string

• No special doEvaluation needed
• The parent implementation works as well

Bernhard F.W. Gschaider swak4Foam for programmers 139/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

After compiling

• Don’t forget registering the functions with the run-time
selection table in the source

• Otherwise you won’t see them

• If they are registered you see them in the "online help"

"Loaded␣plugin␣functions␣for␣’FieldValueExpressionDriver ’:"
gameOfLife_Nstep:

"volScalarField␣gameOfLife_Nstep(internalField/volScalarField␣oldState ,<brk>
<cont> primitive/label␣nr_of_iterations)"

gameOfLife_rules_step:
"volScalarField␣gameOfLife_rules_step(internalField/volScalarField␣<brk>

<cont> oldState ,primitive/string␣surviveSlashBirth)"
gameOfLife_step:

"volScalarField␣gameOfLife_step(internalField/volScalarField␣oldState)"

Bernhard F.W. Gschaider swak4Foam for programmers 140/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Exercises

• Play around with the rules sets and try to find more interesting
combinations

• The quotes for the rules-string have to be escaped with \
• The old "string in string"-problem

• Try the functions on grids with different connectivies
(tetrahedral for instance)

• Extend the implementation to include "edge neighbors"
• Write a function that executes a specified rule N times

• Double inheritance is not a good idea

Bernhard F.W. Gschaider swak4Foam for programmers 141/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Can you find the rule-set? More than one step

Bernhard F.W. Gschaider swak4Foam for programmers 142/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 143/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Do it

• It is not that hard:
• 1 sub-class
• 1 constructor
• 2 methods
• the actual functionality is up to you

• It allows you to use your function from all the other
swak4Foam-stuff

Bernhard F.W. Gschaider swak4Foam for programmers 144/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

Naming convention for functions

• Of course you may name the function however you like
• But:

• Try to make sure that the function name does not clash with
built-in functions

• And others
• One useful convention is to split the function name into 2

parts
1 A short prefix that identifies the library. Ended with a _
2 The actual function name

• Don’t make the function name too short: 3 weeks later it is
the only documentation you have

Bernhard F.W. Gschaider swak4Foam for programmers 145/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

The problem with outdated function-plugins

• One problem is that the swak-sources are updated and
recompiled

• But your functions are not
• This may lead to all kinds of weird behaviours and crashes
• Solution: the SWAK_USER_PLUGINS-variable

• If the variable is set then it is used by the Allmake-script of
swak

• Content of the variable is the list of locations of sources for
functions

• Separated by ;
• The Allmake-script compiles all these directories with wmake
libso

• So when you recompile swak your functions are recompiled
automagically

• You have to set the variable somewhere
Bernhard F.W. Gschaider swak4Foam for programmers 146/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Outline

1 Introduction
About this presentation
What we’re working with
Before we start

2 Programming-like structures
Stored variables
Global variables
More obscure variable types
"Programming" function objects

3 Python Integration
General
Approximate the pressure drop

4 Plugin-functions
Why plugin-functions
The Game of Life plugin
Testing the plugin
Additional functions
Developing your own functions

5 Conclusion

Bernhard F.W. Gschaider swak4Foam for programmers 147/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

The most important thing we learned today

http://www.gocomics.com/pearlsbeforeswine

Bernhard F.W. Gschaider swak4Foam for programmers 148/153

http://www.gocomics.com/pearlsbeforeswine

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

What else we learned

• There are a lot of function objects in swak4foam
• Some are quite useful

• Python-integration allows us to use Python-libraries in our
OpenFOAM-runs

• Python is fun
• Function plugins make it possible to integrate user-specific

functions
• Sub-class one class and add three methods and you’re in

business
• The actual functionality depends on you

Bernhard F.W. Gschaider swak4Foam for programmers 149/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Acknowledgment

• All the things here build on the technical marvel that is
OpenFOAM / FOAM

• Honorable mentions (without these swak4Foam wouldn’t be
possible):

• run-time selection
• object registries

• So: three cheers to Henry and Hrv (and all others who worked
on it)

Bernhard F.W. Gschaider swak4Foam for programmers 150/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

The exercises

• By the time we’ve reached this slide the next trainer is
probably knocking on my shoulder and asking me "politely" to
leave

• Nevertheless you’re encouraged to try the examples yourself
• and do the exercises

• I’m willing to help you with the exercises in the next few weeks
• To do so I created a Reddit
http://www.reddit.com/r/swakPyFoam/

• Will start a thread there with the name of this presentation
• Post your questions there and brag about your solutions

• Don’t spam the message board. Others will be annoyed
• Don’t EMail. Others can’t read it

Bernhard F.W. Gschaider swak4Foam for programmers 151/153

http://www.reddit.com/r/swakPyFoam/

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

Goodbye to you

Thanks for listening
Questions?

Bernhard F.W. Gschaider swak4Foam for programmers 152/153

Introduction
Programming-like structures

Python Integration
Plugin-functions

Conclusion

License of this presentation

This document is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License (for the full text of the
license see http:
//creativecommons.org/licenses/by-sa/3.0/legalcode). As
long as the terms of the license are met any use of this document is
fine (commercial use is explicitly encouraged).
Authors of this document are:
Bernhard F.W. Gschaider original author and responsible for the

strange English grammar. Contact him for a copy of
the sources if you want to extend/improve/use this
presentation

Bernhard F.W. Gschaider swak4Foam for programmers 153/153

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Introduction
	About this presentation
	What we're working with
	Before we start

	Programming-like structures
	Stored variables
	Global variables
	More obscure variable types
	"Programming" function objects

	Python Integration
	General
	Approximate the pressure drop

	Plugin-functions
	Why plugin-functions
	The Game of Life plugin
	Testing the plugin
	Additional functions
	Developing your own functions

	Conclusion

