
Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

State and Solution
State machines and manipulating the solution process with

swak4Foam

Bernhard F.W. Gschaider

HFD Research GesmbH

Exeter, United Kingdom, Europe
24. July 2017

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 1 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline I

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations
Additional calculations
Controlling the time-step

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 2 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline II
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 3 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 4 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

This presentation

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 5 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

This presentation

What is it about

This is an advanced swak4Foam presentation
I won’t explain the very basic things

It shows how swak4Foam can be used to influence the solution
Either by changing "only" the numerics
or the physical solution

One tool we will use are the rather new State machines
We will modify three standard tutorials

1 Changing the numerics during the run to improve the run-time
2 Checking for convergence of the phyiscal solution instead of only the

residuals and stopping the run depending on it
3 Prototyping a simple physical model without writing a proper solver

for it

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 6 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

This presentation

How this presentation is to be used

Intended audience
People who already worked with OpenFOAM

Know for instance how to modify the system/controlDict
Basic knowledge of swak4Foam would be nice

But if you’ve never used it and the presentation motivates you to
check out: great

This presentation tries to be as self-contained as possible
Theoretically you can work through it on your own

All the relevant changes are spelled out on the slides
I will present it as a 1.5h "lecture"

Too fast to redo the examples
You are encouraged to try the examples afterwards on your own

The finished cases will be available in the
Examples/FromPresentations folder of the swak4Foam sources

Names will start with OFW12_

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 7 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Who is this?

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 8 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Who is this?

Bernhard Gschaider

Working with OpenFOAM™ since it was released
Still have to look up things in Doxygen

I am not a core developer
But I don’t consider myself to be an Enthusiast

My involvement in the OpenFOAM™-community
Janitor of the openfoamwiki.net
Author of two additions for OpenFOAM™

swak4foam Toolbox to avoid the need for C++-programming
PyFoam Python-library to manipulate OpenFOAM™ cases

and assist in executing them
In the admin-team of foam-extend
Organizing committee for the OpenFOAM™ Workshop

The community-activies are not my main work but collateral damage
from my real work at . . .

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 9 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Who is this?

Heinemann Fluid Dynamics Research GmbH

The company

Subsidary company of
Heinemann Oil

Reservoir Engineering
Reservoir management

Description

Located in Leoben, Austria
Works on

Fluid simulations
OpenFOAM™ and
Closed Source

Software development for
CFD

mainly OpenFOAM™

Industries we worked for
Automotive
Processing
. . .

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 10 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

What are we working with

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 11 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

What are we working with

What is PyFoam

PyFoam is a library for
Manipulating OpenFOAM-cases
Controlling OpenFOAM-runs

It is written in Python
Based upon that library there is a number of utilities

For case manipulation
Running simulations
Looking at the results

All utilities start with pyFoam (so TAB-completion gives you an overview)
Each utility has an online help that is shown when using the --help-option
Additional information can be found

on http://openfoamwiki.net

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 12 / 170

http://openfoamwiki.net

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

What are we working with

What is swak4Foam

From http://openfoamwiki.net/index.php/Contrib/swak4Foam

swak4Foam stands for SWiss Army Knife for Foam. Like that knife it
rarely is the best tool for any given task, but sometimes it is more

convenient to get it out of your pocket than going to the tool-shed to get
the chain-saw.

It is the result of the merge of
funkySetFields
groovyBC
simpleFunctionObjects

and has grown since
The goal of swak4Foam is to make the use of C++ unnecessary

Even for complex boundary conditions etc

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 13 / 170

http://openfoamwiki.net/index.php/Contrib/swak4Foam

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

What are we working with

The core of swak4Foam

At its heart swak4Foam is a collection of parsers (subroutines that
read a string and interpret it) for expressions on OpenFOAM-types

fields
boundary fields
other (faceSet, cellZone etc)

. . . and a bunch of utilities, function-objects and boundary
conditions that are built on it
swak4foam tries to reduce the need for throwaway C++ programs
for case setup and postprocessing

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 14 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

What are we working with

Building from smaller blocks

Most of swak4foam are small, dynamically loadable parts
function objects
boundary conditions
fvOptions

Each of them is quite limited in what it can do
But they can pass information to each other

Through fields
Global variables
other things

By using that quite complex applications can be built
It is a bit like programming

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 15 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

What are we working with

Definitions

Typical building blocks we’ll use are
function objects small programs that are executed at the end of each

time-step
fvOptions small programs that are used to modify the matrix and/or

the solution at times specified by the solver
boundary conditions setting values on the boundary. Usually before a

field is solved
function plugins these extend the swak4Foam-parser with special

functions
either not of general use
or won’t work in most solvers (for instance: because
they require a radiation model)
There is a presentation swak4Foam for
programmers that demonstrates how to write your
own functions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 16 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Before we start

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 17 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Before we start

Command line examples

In the following presentation we will enter things on the command line.
Short examples will be a single line (without output but a ">" to
indicate input)

> ls $HOME

Long examples will be a grey/white box
Input will be prefixed with a > and blue
Long lines will be broken up

A pair of <brk> and <cont> indicates that this is still the same line in the
input/output

«snip» in the middle means: "There is more. But it is boring"

Long example

> this is an example for a very long command line that does not fit onto one line of the slide <brk>
<cont> but we have to write it anyway

first line of output (short)
Second line of output which is too long for this slide but we got to read it in all its glory

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 18 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Before we start

Used Foam version

The examples here were derived from the tutorials in OpenFOAM+
v1612+

And calculated with that

Equivalent tutorials from OpenFOAM 4.1 should work as well
foam-extend would need some modification

Due to differences in the dictionaries
But the principles apply as well
The third example definitely won’t work

Because there are no fvOptions in foam-extend

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 19 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 20 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Until now

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 21 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Until now

The problems

Some machines need more than one boundary conditions
Valves open and close
Heaters switch on and off

These boundaries switches may depend on the state of the
simulation

Pressure/temperature/etc goes above/below a certain threshold
Time has passed since an event
. . .

Adding such states to a simulation requires programming
Special solver
elaborate boundary conditions

Programming should be avoided
it only leads to errors and heartache

especially in C++

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 22 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Until now

The problems

Some machines need more than one boundary conditions
Valves open and close
Heaters switch on and off

These boundaries switches may depend on the state of the
simulation

Pressure/temperature/etc goes above/below a certain threshold
Time has passed since an event
. . .

Adding such states to a simulation requires programming
Special solver
elaborate boundary conditions

Programming should be avoided
it only leads to errors and heartache

especially in C++

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 22 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Until now

Solution in swak4Foam (until now)

Implementing states in swak4Foam involved
Function objects to create global variables

Variables that could be read in other function objects and boundary
conditions

Function objects that manipulated these global variables
Function objects that executed depending on some conditions
Boundary conditions that read these global variables
and/or stored variables

Variables that "remembered" their states

It was a bit of a hack
Hard to maintain
Hard to understand

But at least it didn’t require C++

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 23 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Until now

Solution in swak4Foam (until now)

Implementing states in swak4Foam involved
Function objects to create global variables

Variables that could be read in other function objects and boundary
conditions

Function objects that manipulated these global variables
Function objects that executed depending on some conditions
Boundary conditions that read these global variables
and/or stored variables

Variables that "remembered" their states

It was a bit of a hack
Hard to maintain
Hard to understand

But at least it didn’t require C++

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 23 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Until now

Solution in swak4Foam (until now)

Implementing states in swak4Foam involved
Function objects to create global variables

Variables that could be read in other function objects and boundary
conditions

Function objects that manipulated these global variables
Function objects that executed depending on some conditions
Boundary conditions that read these global variables
and/or stored variables

Variables that "remembered" their states

It was a bit of a hack
Hard to maintain
Hard to understand

But at least it didn’t require C++

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 23 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Until now

Example from OSCIC 2012 in London

This example switched a number of things on and off with global
variables
In the swak-distribution:
Examples/FromPresentations/OSCFD_cleaningTank3D (and 2D)

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 24 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

State machines

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 25 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

State machines

Definition of State machines

Stolen from Wikipedia:
A finite-state machine (FSM) or finite-state automaton (FSA, plural:
automata), or simply a state machine, is a mathematical model of
computation used to design both computer programs and sequential
logic circuits.
It is conceived as an abstract machine that can be in one of a finite
number of states.
The machine is in only one state at a time

the state it is in at any given time is called the current state.

It can change from one state to another when initiated by a
triggering event or condition

this is called a transition.

A particular FSM is defined by
1 a list of its states,
2 its initial state
3 the triggering condition for each transition.

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 26 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

State machines

Example

State machine model for a valve
4 States: Initial state, Valve opened Valve closed and
Panic shutdown

Represented by the circles

Initial state is Initial State
Transitions represented by the arrows

Condition written next to the arrow (in our case pressure thresholds
trigger switches)

Panic dump is a Final State (no transitions out of it)
Not necessary for a state machine

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 27 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

In swak4Foam

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 28 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

In swak4Foam

Add state machines to swak4Foam

All things necessary are in one library
Names start with stateMachine

Function object to create and update a State machine
Function plugins to access them in expressions
Other function objects to manipulate and write the state of the the
State machine

controlDict
libs (

"libswakStateMachine.so"
);

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 29 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

In swak4Foam

Specification of a state machine

The stateMachineCreateAndUpdate function object specifies a state
machine
machineName name of the machine

states list of possible states
initialState state to start in
transitions list of dictionaries that specify transitions

from source state (state the machine is currently
in)

condition expression with the condition that has to be
true

logicalAccumulation does condition have to be true
only once (or) or everywhere (and)

to state to move to if condition is true
description Text to print if transition "fires"

Other typical swak-parameters like valueType and variables can also
be specified

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 30 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

In swak4Foam

"Driving" the state machine

stateMachineCreateAndUpdate is "executed" once every timestep

transitions where from is the current state are checked
They are evaluated in the order they are in the list

The first one that evaluates to true is used
Transition to state to
Record time of transition

If no transition "fires" machine stays in current state

Function object stateMachineSetState unconditionally moves
machine to a state

To be used in conditional function objects (executeIf)

stateMachineMachineState writes the current state of the
machine to a file
State of the machine is written at every output time and will be
used for a restart of the simulation

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 31 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

In swak4Foam

Functions for state machines

These functions can be used everywhere a logical expression is acceptable
stateMachine_isState(machine,state) true if the machine named

machine is currently in the state state
stateMachine_timeSinceChange(machine) time since the machine

changed into the current state (to implement conditions
like "How long has the valve been open")

stateMachine_stepsSinceChange(machine) number of time steps
since the last state change of machine

stateMachine_changedTo(machine,state) How many times has the
machine changed to state (for conditions like "How
often did the valve open")

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 32 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 33 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Problem description

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 34 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Problem description

The sonicFoam case nacaAirfoil

We will use a standard tutorial

> pyFoamCloneCase.py $FOAM_TUTORIALS/compressible/sonicFoam/RAS/nacaAirfoil <brk>
<cont> nacaAirfoilControlled

> cd nacaAirfoilControlled

This case simulates an airfoil in a high Mach-number flow field
Mesh was generated with a third-party tool
Cell sizes differ significantly
Next slides show the mesh

Yes: it is oriented that way

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 35 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Problem description

Overview of the geometry

Figure: The whole geometry

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 36 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Problem description

Close-up on the foil

Figure: The actual foil

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 37 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Problem description

Extent of the foil

Figure: We will need this later

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 38 / 170

Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Problem description

The Running_Notes file

In the case directory there is a file with instructions
To only let the case run till the first write
Change the time-step size
Continue the run

This is because the un-physical initial conditions make the solution
diverge for large time-steps

Running_Notes

nacaAirfoil
~~~~~~~~~~~
* large domain with airfoil section near centre
* extremely non -orthogonal , highly skew mesh refined around the airfoil
* running at Mach 1.78
* limited corrected 0.5 on all laplacianSchemes because the mesh is so poor
* run to t = 0.02 with nextWrite; change to stopAt endTime to continue running
* deltaT can be increased later in the run to 2e-07

Remark: it should probably say run to t=2e-4

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 39 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Problem description

The plan

Stopping and starting by hand is boring
Also: we have a suspicion that running that long with small
time-steps is not necessary

We don’t want to modify the case by hand
Increase the time-step during the run
Increase should start once the residuals are small enough
And only go to a maximum

Add some more evaluations
Mesh quality
Location of the shock-front before the foil
See the regions where the solution is not converged

Residuals are high

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 40 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 41 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Preparing the mesh

We remove the Allrun-mesh and prepare the case for use with
pyFoamPrepareCase.py

Move the 0-directory to 0.org
Create this script from Allrun

meshCreate.sh
#!/bin/sh

star4ToFoam -scale 1 \
$FOAM_TUTORIALS/resources/geometry/nacaAirfoil/nacaAirfoil

# Symmetry plane -> empy
sed -i -e ’s/symmetry \([) ]*;\)/empty\1/’ constant/polyMesh/boundary

# Don ’t need these extra files (from star4ToFoam conversion)
rm -f \

constant/cellTable \
constant/polyMesh/cellTableId \
constant/polyMesh/interfaces \
constant/polyMesh/origCellId

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 42 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Adding function objects and other stuff

These libraries are needed for the additional functionality

system/controlDict

libs (
"libsimpleSwakFunctionObjects.so"
"libswakStateMachine.so"
"libswakMeshQualityFunctionPlugin.so"
"libswakVelocityFunctionPlugin.so"
"libswakLocalCalculationsFunctionPlugin.so"
"libswakFunctionObjects.so"
"libswakFvOptions.so"

);

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 43 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Setting up the case

This script is also called by pyFoamPrepareCase.py
funkySetFields sets fields with the local non-orthogonalities of the mesh

mqFaceNonOrtho is from the libswakMeshQualityFunctionPlugin.so
Calculates the non-orthogonality of the faces
Paraview can’t visualize face values
lcFaceMaximum from libswakLocalCalculationsFunctionPlugin.so sets the cell value
to the maximum of its face-values

The stuff below is a template that lets pyFoamPrepareCase.py decompose the case
There is a special presentation on that tool

caseSetup.sh.template

#!/bin/sh

rm -rf processor*

funkySetFields -time 0 -field cellNonOrth -create -expression "lcFaceMaximum(mqFaceNonOrtho ())"
funkySetFields -time 0 -field faceNonOrth -create -expression "mqFaceNonOrtho ()"

<!--(if numberOfProcessors >1) -->
pyFoamDecompose.py . |-numberOfProcessors -|
<!--(end)-->

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 44 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Non-orthogonality field

Figure: The non-orthogonality of the cells

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 45 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Non-orthogonality field close-up

Figure: The worst cells

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 46 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Running the case

Lets run the case on 3 CPUs

Prepare and run

> pyFoamPrepareCase.py . --number =3
<snip>
> pyFoamPlotRunner.py --clear --auto --progress --with -all auto
<snip>

Now we should have results like the following pictures
Don’t ask me to interpret them. Supersonic flow is not my field

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 47 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Solution: Velocity

Figure: Flow solution

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 48 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Solution: Pressure

Figure: Overview of the pressure

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 49 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Solution: Pressure Close-up

Figure: Shockwave in front of the foil

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 50 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Solution: Temperature

Figure: Heating

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 51 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Solution: Turbulence

Figure: Turbulent kinetic energy

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 52 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Writing the current time-step

sonicFoam doesn’t expect the time-step to change
Therefor it is not automatically written

functions in system/controlDict

deltaTValue {
type swakExpression;
valueType patch;
patchName inlet_1;
outputControlMode timeStep;
outputInterval 1;
accumulations (

average
);
expression "deltaT ()";
verbose true;

}

customRegexp

timeStepValue {
theTitle "Timestep␣[s]";
expr "Expression␣deltaTValue␣:␣␣average =(.+)";
titles (

value
);
logscale true;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 53 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Write additional fields

We write two additional fields
rho which is already there. But not written

CoNumber we calculate this with the plugin-function
courantCompressible from the
libswakVelocityFunctionPlugin.so

functions in system/controlDict

writeRho {
type writeAdditionalFields;
fieldNames (

rho
);
outputControlMode outputTime;

}
courantField {

type expressionField;
autowrite true;
fieldName CoNumber;
expression "courantCompressible(phi ,rho)";
aliases {

rhoField thermo:rho;
}

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 54 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Solution: Density

Figure: Usually this is not written

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 55 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Solution: Local Courant number

Figure: Courant number in all cells

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 56 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Preparations

Statistics of the local Courant-number

functions in system/controlDict

courantStatistics {
type swakExpression;
valueType internalField;
expression "CoNumber";
outputControlMode timeStep;
outputInterval 1;
verbose true;
accumulations (

weightedQuantile0 .1
weightedAverage
weightedQuantile0 .9
weightedQuantile0 .99
weightedQuantile0 .999
max

);
}

customRegexp

courantValues {
theTitle "Courant␣number";
expr "Expression␣courantStatistics␣:␣␣weightedQuantile0 .1=(.+)␣weightedAverage =(.+)␣<brk>

<cont> weightedQuantile0 .9=(.+)␣weightedQuantile0 .99=(.+)␣weightedQuantile0 .999=(.+)␣max =(.+)"<brk>
<cont> ;

logscale true;
titles (

"10%"
average
"90%"
"99%"
"99.9%"
max

);
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 57 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Additional calculations

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 58 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Additional calculations

Getting the performance of the solver

First we’ve got to know how the solver is performing
OpenFOAM stores this information in a data structure called
solverPerformance
swak4Foam can get it with
solverPerformanceToGlobalVariables

fieldNames which fields we’re interested in

functions in system/controlDict

solverValues {
type solverPerformanceToGlobalVariables;
fieldNames (

p
);
toGlobalNamespace solver;
outputControlMode timeStep;
outputInterval 1;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 59 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Additional calculations

Global variables

To move data from one function object to another swak4Foam has
something called Global variables
To have some kind of separation they are organized in namespaces

Organize the variables into namespaces by "topic"
In our case solver for solver data

Function objects that can write global variables have an entry
toGlobalNamespace
Everywhere where you can specify variables you can add an
optional globalScopes

This is a list with names of global namespaces
All the variables in these namespaces are "injected" before the
regular variables
Attention: the size of the global variables must match the size of the
entity (for instance: number of faces)

If the variable is "uniform" it matches anywhere

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 60 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Additional calculations

Variables from solverPerformance

All the variables are prefixed with the field name and a _

Then there are the three informations usually printed to the console
initialResidual the residual in the beginning
finalResidual the residual in the end
nIterations the number of iterations

Then another _
Then the information which solution attempt

first First attempt
last Last one. If there was only one attempt it is the same

one as first
intermediate attempts are not available. Sorry

Couldn’t find an application for that

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 61 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Additional calculations

Calculation with the solver performance

Here we calculate the improvement per iteration f for the first solution
assuming rinit

rfinal
= fniter

functions in system/controlDict

printPImprovement {
type swakExpression;
valueType patch;
patchName inlet_1;
accumulations (

average
);
expression "exp(log(p_initialResidual_first/p_finalResidual_first)/p_nIterations_first)<brk>

<cont> ";
globalScopes (

solver
);
outputControlMode timeStep;
outputInterval 1;
verbose true;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 62 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Additional calculations

Pressure values
This is a "bread and butter" calculation I add almost everywhere

functions in system/controlDict

pressureValues {
type swakExpression;
valueType internalField;
expression "p";
outputControlMode timeStep;
outputInterval 1;
verbose true;
accumulations (

min
weightedQuantile0 .001
weightedQuantile0 .999
max

);
}

customRegexp

pressureValues {
theTitle "Pressure";
expr "Expression␣pressureValues␣:␣␣min =(.+)␣weightedQuantile0 .001=(.+)␣weightedQuantile0 .999=(.+)␣max =(.+)";
titles (

min
"0.1%"
"99.9%"
max

);
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 63 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Additional calculations

Where are the pressure extremes

Sometimes it is sufficient to know the maximum max(p) of a field
But sometimes we want to know where the maximum is located

maxPosition(p) gives us that

Finding the shock front is a bit harder
"Find me the smalles x for which the pressure is bigger than 1.1 bar"

functions in system/controlDict

highPLocation {
$pressureValues;
expression "maxPosition(p)";
accumulations (

average
);

}
lowPLocation {

$highPLocation;
expression "minPosition(p)";

}
shockPLocation {

$highPLocation;
expression "minPosition(p>1.1e5␣?␣pos().x␣:␣0)";

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 64 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 65 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Setting the possible time-steps

To make things more readable we add two new entries to the
controlDict:

smallest possible timestep
this is also the initial value of deltaT

biggest (target) timestep

set adjustableRunTime to avoid "odd" time directories like
0.9973e-3

functions in system/controlDict

minDeltaT 4e-08;
maxDeltaT 20e-08;

deltaT $minDeltaT;

writeControl adjustableRunTime;

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 66 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Our strategy for the timestep

Stay in the inital state until the initial residual of p drops below
10−6

Then stay in checkForRamp for 5 timesteps
If the residual rises above 10−6 go back to intial

Move to rampUp
Now we can scale the time-step up

Once the target time-step is reached move to fast
Time-step stays constant

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 67 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Specifying the state machine

functions in system/controlDict

theStateMachine {
type stateMachineCreateAndUpdate;
valueType patch;
patchName inlet_1;
states (

initial
checkForRamp
rampUp
fast

);
machineName stepping;
initialState initial;
globalScopes (

solver
);

<<cont >>

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 68 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Macro expansion in swak-expressions

swak-expressions and the OpenFOAM-dictionaries are two
completely different worlds

But sometimes it would be nice to access dictionary values in
expressions

The $-symbol allows this
After that inside of [] we specify two things

What type is the value (in cast-notation from C++)
Where to find it: in OpenFOAM-macro notation without the initial $

In the following example $[(scalar):maxDeltaT] means "get
maxDeltaT from the top-level of the dictionary and insert it as a
scalar
A detailed description (including the possible casts) is given in the
Incomplete Reference Guide

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 69 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Specifying the transitions

functions in system/controlDict

transitions (
{

description "We’re␣ready␣to␣speed␣up";
condition "p_initialResidual_first <1e-6";
logicalAccumulation and;
from initial;
to checkForRamp;

}
{

description "Go␣back␣to␣intial";
condition "p_initialResidual_first >1e-6";
logicalAccumulation and;
from checkForRamp;
to initial;

}
{

description "Only␣if␣5␣times␣good";
condition "stateMachine_stepsSinceChange(stepping)>5";
logicalAccumulation and;
from checkForRamp;
to rampUp;

}
{

description "The␣ramp␣has␣succeeded";
condition "deltaT () >=0.999*$[( scalar):maxDeltaT]";
logicalAccumulation and;
from rampUp;
to fast;

}
);

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 70 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Writing the transitions

For plotting we write out the machine state
and tell PyFoam how to pick it up

functions in system/controlDict

writeState {
type stateMachineState;
outputControlMode timeStep;
outputInterval 1;
verbose true;
machineName stepping;

}

customRegexp

steppingState {
theTitle "State␣machine␣stepping";
expr "Machine␣stepping␣in␣state␣.+␣\(code:␣([0 -9]+)\)␣.+";
titles (

state
);
with points;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 71 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Setting the timestep

Finally what we wanted
Scale the time-step up if we’re in rampUp
Otherwise leave it alone

functions in system/controlDict

setDeltaT {
type setDeltaTBySwakExpression;
outputControlMode timeStep;
outputInterval 1;
deltaTExpression {

expression "targetDeltaT";
independentVariableName t;
valueType patch;
patchName inlet_1;
storedVariables (

{
name targetDeltaT;
initialValue "$[( scalar):deltaT]";

}
);
variables (

"targetDeltaT=stateMachine_isState(stepping ,rampUp)␣?␣min(targetDeltaT *1.01,$[:<brk>
<cont> maxDeltaT ])␣:␣targetDeltaT;"

);
};

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 72 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Stored variables

To be able to scale targetDeltaT up we’ve got to know which
value it had before
Stored variables allow us to do that

Keep their values between time-steps
If they were never set an intialValue is used

These variables are declared in a list storedVariables

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 73 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

The states of the machine

Figure: after the startup nothing changes

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 74 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Size of the timesteps

Figure: Going to a maximum

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 75 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Size of the timesteps during the whole simulation

Figure: Scaled down for writing

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 76 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Courant number distribution

Figure: Over the whole simulation

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 77 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Residuals of the linear solver

Figure: This is a standard-plot

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 78 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

How much does the solver improve the pressure equation

Figure: Residual gets smaller by this factor

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 79 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Development of pressure at startup

Figure: How does the pressure distribution evolve

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 80 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Development of pressure during the simulation

Figure: Pressure goes to fixed values

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 81 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Where are the pressure extremes

Figure: Minimum, Maximum and Shock-front

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 82 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Controlling the time-step

Residuum of the momentum equation

Figure: Evolution of the error

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 83 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Getting local residuals

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 84 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Getting local residuals

Which fvOption-entry points are available

Not all possible entry-points for fvOptions are implemented
Sometimes with very good reasons

Finding out which are actually can be quite a pain
One has to go to the source

This fvOption prints this information every time a fvOption could
be used

the name of the field
the available fvOption hook

Does nothing else

constant/fvOptions

showFvOptions {
type reportAvailableFvOptions;
active true;
selectionMode all;
reportAvailableFvOptionsCoeffs {}

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 85 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Getting local residuals

Calculating the residual

This fvOption calculates the residual ~r = ~A~x−~b for the current
matrix and solution for fieldName

Stores the result in a field whose name is composed of namePrefix
and fieldName

doAtAddSup specifies whether this should be done when the source
terms are done
Caution: the order inside the fvOptions-file is important here

"Whicvh fvOption already manipulated the matrix
Especially when used together with its After-sibling

See below

constant/fvOptions

momentumResidual {
type matrixChangeBefore;
active true;
selectionMode all;
matrixChangeBeforeCoeffs {

doAtAddSup no;
fieldName U;
namePrefix residual;

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 86 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Getting local residuals

Calculating the relative residual

The way the residual is calculated it depends on the cell size
By scaling it with the cell size we get something more meaningful

functions in system/controlDict

notOnStart {
type executeIfStartTime;
readDuringConstruction false;
runIfStartTime false;

functions {
relativeChange {

type expressionField;
autowrite true;
fieldName relResidualU;
expression "residualU/vol()";

}
momentumChange {

$pressureValues;
accumulations (

weightedQuantile0 .01
weightedQuantile0 .1
weightedAverage
weightedQuantile0 .9
max

);
expression "mag(relResidualU)";

}
}

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 87 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Getting local residuals

Conditional function object execution

At the first time-step no residual field is available
To avoid an error we guard it with executeIfStartTime

runIfStartTime to false negates the meaning

This is an example for a function object whose main purpose is the
calling of other function objects

The other function objects are listed in a functions dictionary

A number of such function objects is available
All starting with executeIf
Even depending on swak-expressions

Optionally they can have an else-entry
The readDuringConstruction-entry controls when the
functions-list is read

May be necessary to set to avoid problems with the "client" function
objects

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 88 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Getting local residuals

Solution: Residual of ~u

Figure: The absolute residual

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 89 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Getting local residuals

Solution: Relative residual of ~u

Figure: The relative residual

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 90 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 91 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Checking for convergence of physical parameters

When calculating a steady case we want the solution to converge
Meaning "It should not change anymore"
Numerical convergence is only an indication for this

Checking for this is tricky
Comparing the current solution with the previous solution is not
enough

The "peak" of an oscillation may look like a final state

Storing more solutions is prohibitive
Small cells may oscillate without influencing the overall solution

In this section it is demonstrated how to check for convergence using
a subset of the solution

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 92 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Speeding up the simulation

When starting from "unphysical" initial conditions the simulation is
likely to crash
Often you hear hints like

"In the beginning .."
use smaller timesteps
use small relaxation factors
use lower order schemes

". . . and after some iterations . . . "
increase the timestep
increase the relaxation
switch to higher order schemes

In the last example you saw how to manipulate the time-step
Here we’ll do the other two

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 93 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 94 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

The tutorial case

We use $FOAM_TUTORIALS/incompressible/simpleFoam/simpleCar/

This is an incompressible steady simulation
It simulates a simplified car

2D
No wheels
A porous zone to simulate flow through the engine

What we want to do with this case
Check for convergence by looking on the flow field 6m from the inlet

this was chosen because it is still in the recirculation
After some time increase the relaxation

Spoiler: good idea
Switch to higher order schemes

Spoiler: bad idea

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 95 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Adaption for pyFoam

Again we switch from Allrun to pyFoamPrepareCase.py

meshCreate.sh
#!/bin/sh

blockMesh
topoSet

caseSetup.sh.template

#! /bin/sh

rm -rf processor*
<!--(if numberOfProcessors >1) -->
pyFoamDecompose.py . |-numberOfProcessors -|
<!--(end)-->

Running it

> pyFoamPrepareCase . --number =2
> pyFoamRunner.py --clear --progress --auto auto

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 96 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Solution: the velocity field

Figure: Mark at 6m

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 97 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Solution: the turbulence

Figure: Turbulence converged

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 98 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 99 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Don’t use residuals for convergence

Previously the run stopped when residuals fell below a limit
We comment that out

Now the run would continue until endTime

system/fvSolution

SIMPLE
{

nNonOrthogonalCorrectors 0;

residualControl
{

// p 1e-2;
// U 1e-4;
// "(k|epsilon)" 1e-4;

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 100 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Adding our stuff

This time we don’t need much

system/controlDict

libs (
"libsimpleSwakFunctionObjects.so"
"libswakFunctionObjects.so"
"libswakStateMachine.so"

);

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 101 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Creating a line to calculate on

We create the 6m line with createSampleSet
Syntax is similar to the set function object

But not written
Instead swak4Foam can access it under the setName

functions in system/controlDict

createSampleLine {
type createSampledSet;
outputControl timeStep;
outputInterval 1;
setName sixmLine;
set {

type uniform;
axis distance;
start (6 0 0.05);
end (6 3 0.05);
nPoints 100;

}
writeSetOnConstruction true;
autoWriteSet true;
setFormat vtk;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 102 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Calculating and storing the difference

This is where the magic happens: current velocity on sixmLine is
compared with the one 50 iterations ago

functions in system/controlDict

calcDifference {
type calculateGlobalVariables;
valueType set;
setName sixmLine;
verbose true;
outputControl timeStep;
outputInterval 1;
variables (

"oldU=U;"
"diffU=U-oldU;"

);
toGlobalNamespace velDifference;
toGlobalVariables (

diffU
);
delayedVariables (

{
name oldU;
startupValue "vector (0,0,0)";
storeInterval 1;
delay 50;

}
);

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 103 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Calculating our own global variables

Previously solverPerformanceToGlobalVariables calculated the
global variables for us
calculateGlobalVariables allows us to calculate them ourselves

1 Calculates all expressions in variables
2 Looks at the list toGlobalVariables
3 Variables found in that list are stored in toGlobalNamespace

Now the variable values are available for other function objects

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 104 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Delayed variables

Delayed variables are special variables with a schizophrenic
behaviour

When written to they behave like regular variables
When read they don’t use the current value but the value set some
time ago (the delay)

They are declared in a list delayedVariables of dictionaries
name the name under which the variable is known
delay how far back in time it should go

startupValue during the first delay seconds there is nothing to
remember. This value is used instead

storeInterval this is the interval at which values should be
remembered. When remembering values between that
are interpolated

set it too high: you might run out of memory
set it too low: it might be inaccurate
in our steady simulation 1 means: we remember
everything

Values longer ago than delay are forgotten
Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 105 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Reporting the change

We want to see how big the changes are

functions in system/controlDict

changedU {
type swakExpression;
expression "mag(diffU)";
accumulations (

average
max

);
valueType set;
setName sixmLine;
verbose true;
outputControl timeStep;
outputInterval 1;
globalScopes (

velDifference
);
// debugCommonDriver 1;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 106 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Same for the porosity

We duplicate this for the porous block
We don’t use it
But we don’t mind: macro expansion serves us the typing

functions in system/controlDict

calcDifferencePoro {
$calcDifference;
valueType cellZone;
zoneName porousZone;
toGlobalNamespace velDifferencePoro;

}
changedUPoro {

$changedU;
valueType cellZone;
zoneName porousZone;
globalScopes (

velDifferencePoro
);

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 107 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Plotting the changes

Seeing the changes convinces us that they get smaller

customRegexp

changeU {
theTitle "Change␣of␣velocity␣6m␣after␣inlet";
expr "Expression␣changedU␣:␣␣average =(.+)␣max =(.+)";
logscale true;
titles (

average
max

);
}
changeUPoro {

type slave;
master changeU;
expr "Expression␣changedUPoro␣:␣␣average =(.+)␣max =(.+)";
titles (

"average␣poro"
"max␣poro"

);
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 108 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Strategy to find convergence

Start in initial
Wait 50 timesteps before we go to waiting and consider the
changes

This is to allow our delayed variable to "fill up"

When all changes are smaller than 1 cm
s we move to lookingGood

If we stay in lookingGood for 100 timesteps we move to
converged

If change goes above 1 cm
s

we move back to waiting

We don’t leave converged but hope that someone will stop the
simulation now

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 109 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Create state machine

We create the state machine

functions in system/controlDict

convergedStateMachine {
type stateMachineCreateAndUpdate;
valueType set;
setName sixmLine;
states (

initial
waiting
lookingGood
converged

);
machineName converged;
initialState initial;
globalScopes (

velDifference
);

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 110 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

The transitions

and implement the transitions
Note: use of or and and when checking for "bigness"

functions in system/controlDict

transitions (
{

description "Startup␣is␣over";
condition "stateMachine_stepsSinceChange(converged) >50";
logicalAccumulation and;
from initial;
to waiting;

}
{

description "Go␣back␣to␣intial";
condition "max(mag(diffU)) <0.01";
logicalAccumulation and;
from waiting;
to lookingGood;

}
{

description "Got␣a␣big␣difference";
condition "mag(diffU) >=0.01";
logicalAccumulation or;
from lookingGood;
to waiting;

}
{

description "Been␣good␣long␣enough";
condition "stateMachine_stepsSinceChange(converged) >100";
logicalAccumulation and;
from lookingGood;
to converged;

}
);

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 111 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

End if converged

Someone has to end the run when the state machine converged is
in state converged

writeAndEndSwakExpression is the kind of function object that has
no problem with this

And it also triggers the data to be written (couldn’t tell from the
name)

functions in system/controlDict

endIfConverged {
type writeAndEndSwakExpression;
valueType set;
setName sixmLine;
logicalExpression "stateMachine_isState(converged ,converged)";
logicalAccumulation and;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 112 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

Change of the velocity

Figure: Change of the velocity on the 6m line

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 113 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Waiting for convergence

The residuals

Figure: Going down steady

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 114 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 115 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

The original relaxation

These are the "safe" relaxation parameters
They make sure that during the startup-phase the simulation does
not diverge
But later they could be higher

Faster conergence

system/fvSolution

relaxationFactors
{

fields
{

p 0.3;
}
equations
{

U 0.7;
k 0.7;
epsilon 0.7;

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 116 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Switching schemes and relaxation

This function manipulates fvSchemes and fvSolution in memory at
specified time

Second parameters are the names of the sub-directories to use
For instance "At time 200 use the contents of fastTransport to modify
fvSolution

resetBeforeTrigger specifies whether old modifications should be removed
In our case fastFluid will be used in addition to fastTransport

There is a similar function object stateMachineFvSolutionFvSchemes
that does this based on the state of a state machine

But we would have needed to add a second state machine

functions in system/controlDict

switchFasterRelaxation {
type timeDependentFvSolutionFvSchemes;
solutionTriggers (

(200 fastTransport)
(400 fastFluid)

);
schemesTriggers (

(500 highOrderTurb)
);
resetBeforeTrigger false;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 117 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Alternate relaxation factors

First we speed up turbulence
Then the actual flow solution

Maybe even higher relaxations are possible

system/fvSolution

fastTransport {
relaxationFactors
{

equations
{

k 0.8;
epsilon 0.8;

}
}

}
fastFluid {

relaxationFactors
{

fields
{

p 0.4;
}
equations
{

U 0.8;
}

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 118 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Change of schemes

Original convection schemes in system/fvSchemes

divSchemes
{

default none;
div(phi ,U) bounded Gauss upwind;
div(phi ,k) bounded Gauss upwind;
div(phi ,epsilon) bounded Gauss upwind;
div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

The higher-order overriding schemes in system/fvSchemes

highOrderTurb {
divSchemes
{

div(phi ,k) bounded Gauss linearUpwind phi;
div(phi ,epsilon) bounded Gauss linearUpwind phi;

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 119 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Change of the velocity

Figure: Change of the velocity on the 6m line

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 120 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Change of the velocity - closer look

Figure: Change of the velocity on the 6m line

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 121 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Residual

Figure: Higher order scheme "excite" the residuals

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 122 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Changing the fv-stuff

Residual in the beginning

Figure: Changes in relaxation clearly visible

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 123 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 124 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 125 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

The tutorial case

The case we use is
$FOAM_TUTORIALS/lagrangian/reactingParcelFoam/filter

Air flows through a filter
Particles are injected

Can’t pass through the filter
Water evaporates from the particles

Vapor is transported through the filter to the outlet

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 126 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

What we’ll change about the case

Particles disappear
Particles that lost 10% of their initial mass will be removed from the
system

Vapor condenses in the filter
In the filter a fraction of the vapor is removed from the air
It accumulates in the filter material

But distributes by diffusion

The wet filter changes its permeability
Places with more condensed water resist the air-flow

All these changes are not completely improbable
But the constants have been changed to make a quick simulation
Does not resemble a real system

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 127 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Adding our own weird preparation

Again: we make pyFoamPrepareCase.py happy

meshCreate.sh
#!/bin/sh

blockMesh

topoSet

createBaffles -overwrite

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 128 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Add the swak-stuff

Adding the necessary libraries

system/controlDict

libs (
"libsimpleSwakFunctionObjects.so"
"libswakLagrangianParser.so"
"libswakFvOptions.so"
"libswakSourceFields.so"
"libswakFunctionObjects.so"
"libswakLagrangianCloudSourcesFunctionPlugin.so"
"libswakCloudFunctionObjects.so"
"libsimpleCloudFunctionObjects.so"

);

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 129 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

Checking the pressure drop
Monitor the effect of the permeability change

functions in system/controlDict

pressureDrop {
type patchExpression;
patches (

inlet
);
verbose true;
accumulations (

min
weightedAverage
max

);
variables (

"pOut{outlet }= average(p);"
);
expression "p-pOut";

}

customRegexp

pressureDrop {
theTitle "Pressure␣Drop␣[Pa]";
expr "Expression␣pressureDrop␣on␣inlet:␣␣min =(.+)␣weightedAverage =(.+)␣max =(.+)";
titles (

min
average
max

);
progress "dP:␣$2";

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 130 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The original case

How much water evaporates from the particles?

lcsSpeciesSource is a plugin function
Asks a cloud for the amount of a species it transfers to the
continuous phase
This is the source term that is usually used by the solvers

functions in system/controlDict

waterSource {
type expressionField;
autowrite true;
fieldName H2Osource;
expression "lcsSpeciesSource(reactingCloud1 ,H2O)";

}
waterSourceTotal {

type swakExpression;
valueType internalField;
verbose true;
expression "H2Osource";
accumulations (

integrate
);

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 131 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Modifying the particles

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 132 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Modifying the particles

This is technical

The parser for particle clouds has to do some . . . strange . . . things
to give similar experience as the others

Sometimes it wants additional information because the cloud it uses
does not exactely match the one the solver uses

Here we had to add 4 values to make it work

constant/reactingCloudProperties

constantProperties
{

rho0 1000;
T0 300;
Cp0 4100;

constantVolume false;

// to keep the parser happy
epsilon0 1;
f0 0.5;
LDevol 0;
hRetentionCoeff 1;

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 133 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Modifying the particles

How much work is moving the parcels

cloudFunctions is the functions for lagrangian particles
swak4foam provides some function objects for this too

This one collects statistics about how often particles hit patches etc
Quite useful if the solver starts to run slow and you suspect that it is
because somewhere particles are caught in "infinite loop"

In cloudFunctions in constant/reactingCloudProperties

howMuchWork {
type cloudMoveStatistics;

}

Typical output

howMuchWork:reactingCloud1:cloudMoveStatistics: Face hit Nr: 160 (716 particles) Min: 0 <brk>
<cont> Mean: 0.2234636843 Max: 2

howMuchWork:reactingCloud1:cloudMoveStatistics: Moves Nr: 2936 (716 particles) Min: 4 Mean:<brk>
<cont> 4.100558758 Max: 9

howMuchWork:reactingCloud1:cloudMoveStatistics Patch walls hit 1 times
howMuchWork:reactingCloud1:cloudMoveStatistics Patch cycLeft_half0 hit 6 times

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 134 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Modifying the particles

Tracing a particle
Sometimes for debugging we want to follow on (or more) particles

In cloudFunctions in constant/reactingCloudProperties

whereGoes42 {
type traceParticles;
particleIds (

{
origProc 0;
origId 42;

}
);

}

Typical output

whereGoes42:reactingCloud1:traceParticles: traced 1 particles

postProcessing/lagrangian/reactingCloud1/whereGoes42/0/trace0

# Time descr (Px Py Pz) celli facei stepFraction tetFacei tetPti origProc origId active typeId <brk>
<cont> nParticle d dTarget (Ux Uy Uz) rho age tTurb (UTurbx UTurby UTurbz) T Cp mass0 nPhases(Y1..<brk>
<cont> YN) nGas(Y1..YN) nLiquid(Y1..YN) nSolid(Y1..YN)

0.544 postFace_face282 (0.1 0.44 0.05) 141 282 0.5 282 1 0 42 1 -1 19.09859317 0.001 0 (0.5 <brk>
<cont> -0.1 0) 1000 0 0 (0 0 0) 300 4200 5.235987756e-07 3(0 1 0) 0() 1(1) 0()

0.544 postMove_cell141 (0.1000000625 0.4400000063 0.049999875) 142 282 0.5 282 1 0 42 1 -1 <brk>
<cont> 19.09859317 0.001 0 (0.5 -0.1 0) 1000 0 0 (0 0 0) 300 4200 5.235987756e-07 3(0 1 0) 0() <brk>
<cont> 1(1) 0()

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 135 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Modifying the particles

"Lose 10%: you’ve got to go"

This function object uses an expression:
"Check if the current mass is 90% of the initial mass"
This is checked after moving the particle
If it is true the particle is eliminated

In cloudFunctions in constant/reactingCloudProperties

eliminateLowMass {
type eliminateBySwakExpression;
eliminatePre false;
eliminatePost true;
eliminationExpression "mass/mass0 <0.9"; // approx 90% of the mass

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 136 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Modifying the particles

Output particle properties

Here we get the distribution of the particle diameters and the temperature difference to
the surrounding air
Particle parsers work like every other parser

For clouds of parcels the weight is the total mass of the parcel (not the weight of one
particle)

fluidPhase allows interpolating the value of a fluid field to the particle position
It is necessary to specify an interpolation scheme

functions in system/controlDict

parcelDiameter {
type swakExpression;
verbose true;
valueType cloud;
expression "d";
accumulations (

min
weightedAverage
max

);
cloudName reactingCloud1;

}
parcelTDiff {

$parcelDiameter;
expression "T-fluidPhase(T)";
interpolationSchemes {

T cell;
}

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 137 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Modifying the particles

Output the first time the parser is used

Each cloud type has a different set of values that can be accessed
The first time a parser is called it lists them all

That way you don’t have to search for it in outdated documentation
constant means that the value can only be read

Different clouds have different properties

Driver for cloud reactingCloud1 of type Cloud <basicReactingMultiphaseParcel > (Proxy type: <brk>
<cont> CloudProxy)

List of functions:
Name | Type | Description

--------------------------------------------------------------
LDevol | scalar | Latent heat of devolatilisation (constant)

T | scalar | Temperature
T0 | scalar | Initial temperature (constant)

TMin | scalar | Minimum temperature (constant)
U | vector | Velocity

UTurb | vector | Turbulent velocity fluctuations
active | bool | Is this parcel active?

age | scalar | Age of the prticle
areaP | scalar | Particle projected area
areaS | scalar | Particle surface area
cell | scalar | number of the cell

cp | scalar | Specific heat capacity
cp0 | scalar | Specific heat capacity (constant)

currentTime | scalar | current time of the particle
d | scalar | Diameter

dTarget | scalar | Target diameter
...

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 138 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 139 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

Model for condensed water in the filter

We model the condensed water with a diffusion equation with a
source term

solverLaplacianPDE solves such an equation at every timestep
A field file condensed has to be added

With boundary conditions, dimensions and initial conditions
For the relevant terms swak-expressions can be used

A proper dimension has to be provided
swak4Foam doesn’t propagate dimensions on purpose when doing
calculations
Dimension-checker of OpenFOAM would fail otherwise

functions in system/controlDict

condensedWater {
type solveLaplacianPDE;
solveAt timestep;
fieldName condensed;
steady false;
rho "1" [0 0 0 0 0 0 0];
lambda "zone(filter)␣?␣1e-3␣:␣0" [0 2 -1 0 0 0 0];
source "rho*H2O*(zone(filter)␣?␣1␣:␣0)" [1 -3 -1 0 0 0 0];

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 140 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

How much is in the filter?

We want statistics about the condensed water

functions in system/controlDict

condensedValue {
type swakExpression;
valueType cellZone;
zoneName filter;
accumulations (

min
weightedQuantile0 .1
weightedAverage
weightedQuantile0 .9
max

);
expression "condensed";
verbose true;

}
condensedTotalSource {

$condensedValue;
expression "H2O*rho";
accumulations (

integrate
);

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 141 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

Condensed water must be removed from the fluid phase

For mass conservation the water that condenses must be removed
from the air
swak4Foam has fvOptions that allow adding any source term to
equations

If the equations support fvOption-source terms
We use the implicit variant to avoid "undershooting"

Technically this is -rho*H2O
Again: dimension has to be provided

constant/fvOptions

waterSwak {
type scalarSwakImplicitSource;
active true;
scalarSwakImplicitSourceCoeffs {

selectionMode cellZone;
cellZone filter;
switchExplicitImplicit true;
expressions {

H2O "-rho" [1 -3 -1 0 0 0 0];
}

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 142 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

The "regular" filter

This is the original Darcy-term in the model
We disable it

constant/fvOptions

filter1
{

type explicitPorositySource;
active no;

explicitPorositySourceCoeffs
{

selectionMode cellZone;
cellZone filter;

type DarcyForchheimer;

DarcyForchheimerCoeffs
{

d (500000 -1000 -1000);
f (0 0 0);

coordinateSystem
{

type cartesian;
origin (0 0 0);
coordinateRotation
{

type axesRotation;
e1 (1 0 0);
e2 (0 1 0);

}
}

}
}

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 143 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

Condensed Water adds to the resistance

Now we add our own resistance
The same factor as in the original
Plus a term that depends on the condensed water

Problem:
Implicit only allows us to specify a scalar (no anisotropy)
Explicit unstable (that’s what the resist variable was for

constant/fvOptions

filterSwak {
type vectorSwakImplicitSource;
active true;
vectorSwakImplicitSourceCoeffs {

selectionMode cellZone;
cellZone filter;
switchExplicitImplicit true;
aliases {

mu thermo:mu;
}
variables (

"coeff =500000*(1+ condensed /0.005);"
"baseResist=coeff*mu;"
"resist=baseResist*vector (1 ,1000 ,1000);"

);
expressions {

U "-baseResist" [1 -3 -1 0 0 0 0];
}

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 144 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

Finding out how big the source terms are

For some fvOptions (heat exchanger, porosity) it would be nice to
know how big the source term is

But they don’t provide it
If they modify the matrix it is hard to tell

The way swak4foam allows doing this is
1 Calculate the residual before: ~r1 = ~A1~x−~b1
2 Let the other fvOption manipulate ~A and ~b
3 Calculate the residual after: ~r2 = ~A2~x−~b2
4 The added source term is ~r2 − ~r1

There are two fvOptions that have to be used as a pair
Need the same fieldName and namePrefix

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 145 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

Before all source terms

constant/fvOptions

momentumSourceBefore {
type matrixChangeBefore;
active true;
selectionMode all;
matrixChangeBeforeCoeffs {

doAtAddSup yes;
fieldName U;
namePrefix fvChange;

}
matrixChangeAfterCoeffs {

$matrixChangeBeforeCoeffs;
}

}
waterSourceBefore {

type matrixChangeBefore;
active true;
selectionMode all;
matrixChangeBeforeCoeffs {

doAtAddSup yes;
fieldName H2O;
namePrefix fvChange;

}
matrixChangeAfterCoeffs {

$matrixChangeBeforeCoeffs;
}

}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 146 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Condensed water

After all source terms

After this the fields fvChangeU and fvChangeH2O "know" hat has
been "done" to the matrix

constant/fvOptions

momentumSourceAfter {
$momentumSourceBefore;
type matrixChangeAfter;

}
waterSourceAfter {

$waterSourceBefore;
type matrixChangeAfter;

}

momentumSourceResidual {
$momentumSourceBefore;
matrixChangeBeforeCoeffs {

doAtAddSup no;
fieldName U;
namePrefix residual;

}
}

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 147 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 148 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

It follows: a gallery

The follwing slides show the results of our changes
1 lines that were plotted with pyFoamPlotRunner.py
2 Several fields in the middle of the simulation

Illustrate the model features we added

3 Series of pictures that show how the condensed water diffuses in the
filter

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 149 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Number of particles

Figure: This plot is generated automatically by PyFoam

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 150 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Different temperatures

Figure: Difference between particle and surrounding gas

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 151 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Evaporated water

Figure: Water in the gas

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 152 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Condensed water

Figure: Average shows preservation after particles are gone

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 153 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Velocity

Figure: Gas velocity

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 154 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Pressure

Figure: The filter makes a difference

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 155 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Temperature

Figure: Particles cool the fluidPhase

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 156 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Velocity source

Figure: Resistance of the filter

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 157 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Velocity residual

Figure: Problematic regions for the calculation

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 158 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Water vapor source

Figure: Water evaporating from the particles

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 159 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Water vapor

Figure: Water in the air

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 160 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Water vapor condensing

Figure: Water condensing on the filter

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 161 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Water condensed

Figure: Water condensed in the filter

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 162 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Water condensed when last particle "dies"

Figure: Maxiumum of condensed water

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 163 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

The results

Water condensed in the end

Figure: Water distributed in the filter

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 164 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 State machines
Until now
State machines
In swak4Foam

3 Changing the solution
Problem description
Preparations

Additional calculations
Controlling the time-step
Getting local residuals

4 Checking for convergence
The original case
Waiting for convergence
Changing the fv-stuff

5 Prototyping a physical model
The original case
Modifying the particles
Condensed water
The results

6 Conclusions

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 165 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Words of warning

The techniques outlined here can be very useful
BUT when used improperly

they can make your run unstable
they can make your simulation unphysical

swak4Foam allows you to shoot
yourself in the foot

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 166 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Further reading

This presentation only covered parts of PyFoam and swak4Foam, but
there is further information available:

On the OpenFOAM-wiki:
http://openfoamwiki.net/index.php/Contrib/swak4Foam in the
section Further Information are links to previous presentations
http://openfoamwiki.net/index.php/Contrib/PyFoam in section
Other material

The Examples directory of the swak-sources
Did I mention the Incomplete reference guide for swak?
The --help-option of the PyFoam-utilities

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 167 / 170

http://openfoamwiki.net/index.php/Contrib/swak4Foam
http://openfoamwiki.net/index.php/Contrib/PyFoam


Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Further presentations

pyFoamPrepareCase.py can handle lots of things
With something called templates
See "Automatic case setup with pyFoamPrepareCase" from the Ann
Arbor Workshop 2015

We skipped the parts about writing data
These are explained in another presentation

"PyFoam for the lazy" from 2016

The training about advanced swak-usage in the same session

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 168 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

Goodbye to you

Thanks for listening
Questions?

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 169 / 170



Introduction State machines Changing the solution Checking for convergence Prototyping a physical model Conclusions

License of this presentation

This document is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License (for the full text of the
license see
http://creativecommons.org/licenses/by-sa/3.0/legalcode).
As long as the terms of the license are met any use of this document is
fine (commercial use is explicitly encouraged).
Authors of this document are:
Bernhard F.W. Gschaider original author and responsible for the strange

English grammar. Contact him for a copy of the sources if
you want to extend/improve/use this presentation

Bernhard F.W. Gschaider (HFD) State and Solution Exeter, 2017-07-24 170 / 170

http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Introduction
	This presentation
	Who is this?
	What are we working with
	Before we start

	State machines
	Until now
	State machines
	In swak4Foam

	Changing the solution
	Problem description
	Preparations
	Additional calculations
	Controlling the time-step
	Getting local residuals

	Checking for convergence
	The original case
	Waiting for convergence
	Changing the fv-stuff

	Prototyping a physical model
	The original case
	Modifying the particles
	Condensed water
	The results

	Conclusions

