swak4Foam and PyFoam Introducing them as a pair

Bernhard F.W. Gschaider

Zagreb, Croatia 24. June 2014

ヘロト ヘヨト ヘヨト ヘ

Outline I

Introduction

About this presentation What are we working with Before we start

2 Basic case setup

Getting the case Running Not so basic uses potational Engineering Basic plotting

3 Advanced processing

Case preparation

Bernhard F.W. Gschaider

swak4Foam and PyFoam

イロン イヨン イヨン イ

Outline II

Adding our own evaluations Evaluations after the fact Function plugins

Manipulating the case

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

6 Data extraction

Distributions

Bernhard F.W. Gschaider

swak4Foam and PyFoam

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

omungsforschung GmbH

Outline III

Exporting data

Innovative Computational Engineering

(ロ) (四) (三) (三)

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Outline

Introduction About this presentation What are we working with Before we start O Advanced processing

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Outline

Introduction About this presentation What are we working with	Evaluations after the fact Eunction plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computational	EnglExporting data
Adding our own evaluations	6 Conclusions

E

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

What it's about

Strömungsforschung GmbH

- Two pieces of software
 - swak4Foam
 - pyFoam

• ... and how they can ease your life with OpenFOAM

Innovative Computational Engineering

ヘロト ヘヨト ヘヨト ヘヨ

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Intended audience and aim

- Intended audience for this presentation:
 - people who already worked a bit with OpenFOAM
 worked a bit means: been through the tutorials and set up a case on their own
 - have heard that PyFoam and swak4Foam exist
- Aim of the presentation
 - Enable user to start using PyFoam and swak4Foam
 - No programming
- The presentation is designed so that all steps can be reproduced using the information on the slides
 - No training files are provided

römungsforschung GmbH

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Format of the presentation

Strömungsforschung GmbH

- This is a hands-on tutorial
- We will use a standard tutorial case
- Modify it till it doesn't look like the original
- No additional files are needed

• Everything you have to enter will be spelled out on the slides

trömungsforschung GmbH

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Limitation

Strömungsforschung GmbH

- In 2 hours we can only give superficial overview of the two packages
 - It is not sure whether we'll even be able to complete it
- For a complete reference of the swak-expressions have a look at the *Incomplete reference guide* that comes with swak
 - Expressions are completely described
 - Almost everything else is missing

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

What are we working with Before we start

Outline

 Introduction About this presentation What are we working with 	Evaluations after the fact Eunction plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation: Computationa Adding our own evaluations	al EnglExporting data6 Conclusions

æ

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

What is PyFoam

- PyFoam is a library for
 - Manipulating OpenFOAM-cases
 - Controlling OpenFOAM-runs
- It is written in Python
- Based upon that library there is a number of utilities
 - For case manipulation
 - Running simulations
 - Looking at the results
- All utilities start with pyFoam (so TAB-completion gives you an overview)
 - Each utility has an online help that is shown when using the --help-option
 - Additional information can be found
 - on openfoamwiki.net

・ロト ・ 一 ト ・ 手 ト ・

trömungsforschung GmbH

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

No Ignaz

About this presentation What are we working with Before we start

Strömungsforschung GmbH

- Almost every previous PyFoam-presentation had *Ignatz Gartengschirrl* in it
 - Ignaz has retired: no more dam-breaking

Innovative Computational Engineering

(ロ) (四) (三) (三)

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

What is swak4Foam

From

http://openfoamwiki.net/index.php/Contrib/swak4Foam

swak4Foam stands for SWiss Army Knife for Foam. Like that knife it rarely is the best tool for any given task, but sometimes it is more convenient to get it out of your pocket than going to the tool-shed to get the chain-saw.

- It is the result of the merge of
 - funkySetFields
 - groovyBC
 - simpleFunctionObjects

and has grown since

- The goal of swak4Foam is to make the use of C++ unnecessary

Bernhard F.W. Gschaider

swak4Foam and PyFoam

14/222

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

The core of swak4Foam

- At its heart swak4Foam is a collection of parsers (subroutines that read a string and interpret it) for expressions on OpenFOAM-types
 - fields
 - boundary fields
 - other (faceSet, cellZone etc)
- ... and a bunch of utilities, function-objects and boundary conditions that are built on it
- swak4foam tries to reduce the need for throwaway C++ programs for case setup and postprocessing

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

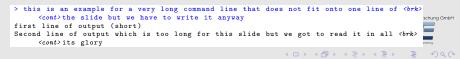
What are we working with Before we start

Outline

Introduction About this presentation	Evaluations after the fact Function plugins
What are we working with	• Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
Advanced processing	Distributions
Case preparation Computation	al Engl Exporting data
Adding our own evaluations	6 Conclusions

æ

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions


About this presentation What are we working with Before we start

Command line examples

• In the following presentation we will enter things on the command line. Short examples will be a single line (without output)

ls \$HOME

- Long examples will be a white box
 - Input will be prefixed with a > and blue
 - Long lines will be broken up
 - A pair of <brk> and <cont> indicates that this is still the same line in the input/output
 - «snip» in the middle means: "There is more. But it is boring"

Bernhard F.W. Gschaider

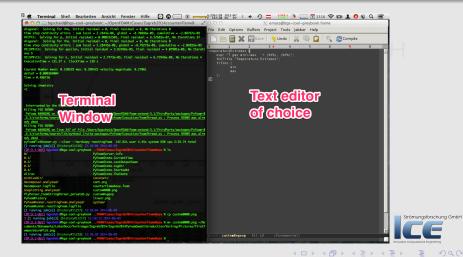
swak4Foam and PyFoam

17/222

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Work environment


- You will use two programs
 - A terminal
 - A text-editor
- For the text-editor you have the choice (these should be installed):
 - Emacs (king of text-editors)
 - VI (my brother uses it. So. OK)
 - Kate with KDE
 - Gedit with Gnome

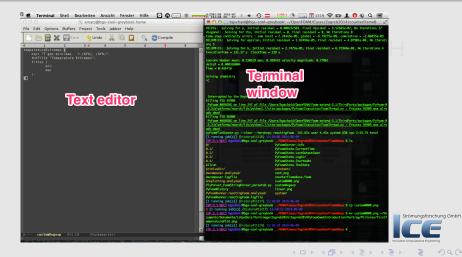
trömungsforschung GmbH

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Recommended screen layout

Bernhard F.W. Gschaider


swak4Foam and PyFoam

19/222

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Setup for non-conformists

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Getting onto the same page

- During the remaining presentation we assume that
 - the zsh is used (optional. bash works too)
 - we use foam-extend 3.1 (required)
- Switch to zsh

zsh

- You should see a more colorful prompt with (OF:-) on the left
 - Only with correct environment set (probably only on the stick)
- Switch on Foam-Extend-3.1

f31

Innovative Computational Engineering

- Now the prompt should show (OF:3.1-Opt)
- Create a working directory and go there

mkdir PyFoamAndSwak; cd PyFoamAndSwak

Bernhard F.W. Gschaider

swak4Foam and PyFoam

・ロト ・日下・ ・ ヨト・

21/222

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Make sure PyFoam is working

- There is a utility that helps make sure that PyFoam is working
 - · and gives valuable information for support

```
> pyFoamVersion.py
Machine info: Darwin | bgs-cool-greybook | 13.2.0 | Darwin Kernel Version 13.2.0: Thu Apr 17 23:03:13 PDT <br/>
     <cont>2014: root:xnu-2422.100.13<sup>-1</sup>/RELEASE X86 64 | x86 64 | i386
Python version: 2.7.6 (default, Nov 19 2013, 19:15:05)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)]
Python executable: /opt/local/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/opt/
     <cont>MacOS/Python
PYTHONPATH: /Users/bgschaid/private python:
Location of this utility: /Users/bgschaid/Development/OpenFOAM/Python/PyFoam/bin/pyFoamVersion.py
Version (1, 7, 'x') Fork openfoam of the installed 14 versions:
  extend -3.0 : /Users/bgschaid/foam/foam-extend -3.0
      extend -3.0-old : /Users/bgschaid/foam/foam-extend -3.0-old
  extend -3.1 : /Users/bgschaid/foam/foam-extend -3.1
    openfoam-1.6-ext : /Users/bgschaid/OpenFOAM/OpenFOAM-1.6-ext
openfoam -1.6-ext-nextRelease : /Users/bgschaid/OpenFOAM/OpenFOAM-1.6-ext-nextRelease
      openfoam-1.6.x : /Users/bgschaid/OpenFOAM/OpenFOAM-1.6.x
      openfoam -1.7.x : /Users/bgschaid/OpenFOAM/OpenFOAM -1.7.x
openfoam-1.7.x-clean : /Users/bgschaid/OpenFOAM/OpenFOAM-1.7.x-clean
      openfoam -1.7.x-vectorN : /Users/bgschaid/OpenFOAM/OpenFOAM -1.7.x-vectorN
      openfoam-2.0.x : /Users/bgschaid/OpenFOAM/OpenFOAM-2.0.x
      openfoam-2.1.x : /Users/bgschaid/OpenFOAM/OpenFOAM-2.1.x
      openfoam-2.2.x : /Users/bgschaid/OpenFOAM/OpenFOAM-2.2.x
      openfoam -2.2.x-vectorN : /Users/bgschaid/OpenFOAM/OpenFOAM -2.2.x-vectorN
      openfoam-2.3.x : /Users/bgschaid/OpenFOAM/OpenFOAM-2.3.x
pyFoam-Version: 0.6.3-rc
ALERT: Reported version (0, 6, 3, 'rc') is different from hardcoded version (0, 6, 3, 'development') -> (brk>
     <cont> probably inconsistent library installation
Path where PyFoam was found (PyFoam.__path__) is ['/Users/bgschaid/private_python/PyFoam']
Configuration search path: [('file', '/etc/pvFoam/pvfoamrc'), ('directory', '/etc/pvFoam/pvfoamrc.d'), ('
```


22/222

swak4Foam and PyFoam

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

pyFoamVersion.py

- Information the utility gives
 - Machine
 - Used python
 - PYTHONPATH (where additional libraries are searched)
 - Information about the used PyFoam
 - Where configuration files are sought
 - Installed libraries relevant for PyFoam
 - With version if possible
- This information helps diagnosing problems
 - Copy this output when reporting problems that might be associated with the installation

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Basic case setup Advanced processing Manipulating the case Data extraction Conclusions

About this presentation What are we working with Before we start

Make sure swak4Foam is installed

- · Call the most popular utility of swak4Foam
 - swakVersion reported below the usual header

> funkySetFields /*	*\	
\\ / F ield foam-extend: Open Source CFD		
V / O peration Version: 3.1	i i	
\\ / A nd Web: http://www.extend-project.de	1	
\\/ M anipulation	1	
*	*/	
Build : 3.1		
Exec : funkySetFields		
Date : Jun 07 2014		
Time : 18:35:01		
Host : bgs-cool-greybook		
PID : 11491		
CtrlDict : /Users/bgschaid/OpenFOAM/foam-extend-3.1/etc/controlDict Case : /Volumes/Foam/Cases/Zagreb2014		
Case : /Volumes/Foam/Cases/Zagreb2014 nProcs : 1		
SigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).		
Sigree . Enabling Hoaring point exception trapping (Form_Sigree).		
// * * * * * * * * * * * * * * * * * *	. //	
swakVersion: 0.3.1 (Release date: Next release)		
// * * * * * * * * * * * * * * * * * *		
> FOAM FATAL ERROR:		
funkySetFields: time/latestTime option is required		
From function main()		
in file funkySetFields.C at line 643.		
TO M L L		
FOAM exiting		

gsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

Outline

Introduction About this presentation What are we working with	Evaluations after the fact Function plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	3 Data extraction
O Advanced processing	Distributions
Case preparation Computationa	EngiExporting data
Adding our own evaluations	6 Conclusions

æ.

Getting the case Running Not so basic uses Basic plotting

Outline

Introduction About this presentation What are we working with	Evaluations after the fact Function plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computational	EngiExporting data
Adding our own evaluations	6 Conclusions

æ.

イロン イヨン イヨン イヨン

Getting the case Running Not so basic uses Basic plotting

The case

- We're going to use a plain tutorial case
 - Add stuff to it until the original author won't recognize it anymore
- The case is counterFlowFlame2D for the reactingFoam solver
 - Simple combustion case
 - Plain blockMesh
 - On one side 100% mixture of CH4 comes in
 - On the other side 23% of O_2
 - Burns in the middle
 - Products leave on top and bottom

$$CH_4 + 2O_2 \rightleftharpoons CO_2 + 2H_2O$$

・ロト ・ 一 ト ・ 手 ト ・

Getting the case Running Not so basic uses Basic plotting

Cloning

- First we get us the case
 - But only the things that are important
- We use the first PyFoam-utility for it
 - And afterwards check the results

> pyFoamCloneCase.py \$FOAM_TUTORIALS/combustion/reactingFoam/ras/

<cont>counterFlouFlame2D counterFlameBase
PyFoam WARNING on line 117 of file /Users/bgschaid/OpenFOAM/foam-extend

<cont>al./ThirdParty/packages/PyFoam-0.6.3/platforms/noarch/lib/

<cont>python2.7/site-packages/PyFoam/Applications/CloneCase.py :

<cont>Directory does not exist. Creating
> ls counterFlameBase
0/ PyFoamHistory counterFlameBase.foam
Allrun constant/ system/

(日) (同) (日) (日) (日)

Getting the case Running Not so basic uses Basic plotting

What is cloned

- Files essential for the case
 - Initial directory 0 (but not other times)
 - system
 - constant
 - Files like Allrun
- Some files are created

PyFoamHistory PyFoam-commands log their activity here counterFlameBase.foam A stub-file for the native Paraview-reader

• Some PyFoam-specific files are added here

römungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

What else can pyFoamCloneCase.py do for me

All PyFoam-utilities have a --help-option:

```
pvFoamCloneCase.pv --help
Usage
  pvFoamCloneCase.pv <source> <destination>
Clones a case by copying the system, constant and 0-directories If the \langle brk \rangle
     <cont> case
is under VCS then the cloning mechanism of the VCS is used
Options
_____
--version
                         show program's version number and exit
--help, -h
                         show this help message and exit
Default
Options common to all PyFoam-applications
--psyco-accelerated Accelerate the script using the psyco-library
(EXPERIMENTAL and requires a separatly installed
                                                                                      rschung GmbH
psvco)
--profile-python
                         Profile the python-script (not the OpenFOAM-program <br k>
     <cont>) -
mostly of use for developers
-- profile - cnython
                         Profile the nuthon_script (not the OpenFOAM_program(brk
                    Bernhard F.W. Gschaider
                                             swak4Foam and PvFoam
                                                                                     30/222
```

Getting the case Running Not so basic uses Basic plotting

What we find in help

- Strömungsforschung GmbF
- Short description of the utility
- Options organized in sections
 - Options common to (most) PyFoam-utlities
 - For instance options that help with debugging
 - Options specific to the utility
 - For instance --add-item allows adding files/directories to be added to the clone
 - Possible application "Add the directory 10 as well"

trömungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

Entering the case

- Next we enter the case directory
- cd counterFlameBase
 - Prepare the mesh

blockMesh

• Check that everything is alright

checkMesh

イロン イヨン イヨン イ

Getting the case Running Not so basic uses Basic plotting

Outline

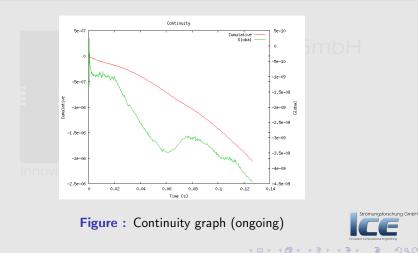
Introduction About this presentation What are we working with	Evaluations after the fact Function plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computationa	I EnglExporting data
Adding our own evaluations	6 Conclusions

æ.

イロン イヨン イヨン イヨン

Getting the case Running Not so basic uses Basic plotting

Running the case

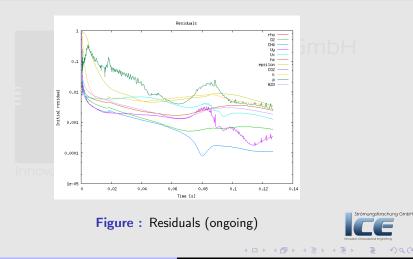

The probably most-used PyFoam-utility

```
> pyFoamPlotRunner.py reactingFoam
_____
| \\ / F ield | foam-extend: Open Source CFD
          O peration | Version: 3.1
A nd | Web: http://www.extend-project.de
 11
       /
  \\ / A nd
          M anipulation
  \\/
\*----
Build : 3.1
Exec : reactingFoam
Date : Jun 08 2014
Time : 16:11:38
Host : bgs-cool-greybook
     : 83164
PTD
CtrlDict : /Users/bgschaid/OpenFOAM/foam-extend-3.1/etc/controlDict
       : /Volumes/Foam/Cases/Zagreb2014/counterFlameBase
Case
nProcs
       : 1
      : Enabling floating point exception trapping (FOAM_SIGFPE).
SigFpe
Create time
Create mesh for time = 0
Reading chemistry properties
                                                                              Strömungsforschung GmbH
```

Ξ.

Getting the case Running Not so basic uses Basic plotting

Window Nr 1 popping up


Bernhard F.W. Gschaider

swak4Foam and PyFoam

35/222

Getting the case Running Not so basic uses Basic plotting

The other window

swak4Foam and PyFoam

36/222

Getting the case Running Not so basic uses Basic plotting

How the directory looks afterwards

• Apart from the added time-directories there are other things that were not there before:

```
> ls
O/
O/
Allrun
Gnuplotting.analyzed/
PyFoamHistory
PyFoamHistory
PyFoamState.ourrentTime
PyFoamState.LastOutputSeen
PyFoamState.StartedAt
PyFoamState.TheState
constant/
counterFlameBase.foam
system/
```

rschung GmbH

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Getting the case Running Not so basic uses Basic plotting

Added files

• PyFoam adds a number of files to the directory:

PyFoamRunner.<solvername>.logfile A complete copy of what was written to the terminal

PyFoamServer.info If you're using the network component of PyFoam this might help you

PyFoamState.* Updated during the run and used by pyFoamListCases.py (another nice utility that you've got to find out about yourself) *.analyzed A directory with the results of the analysis. Contents usually are

> pickledPlots Information to recreate the plots pickledData Data about the run that can be read and processed

by Python (of interest for scripters. Also see pyFoamEchoPickledApplicationData.py)

pickledStartData, pickledUnfinishedData Versions of the

above that are written during the run

:: Log-files if the user chooses to write them

Strömungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

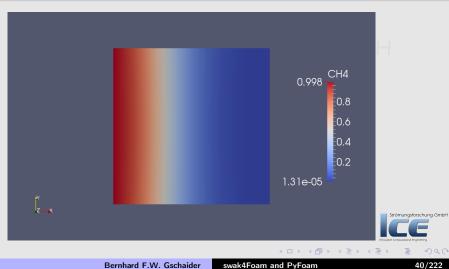
What did we actually simulate?

Strömungsforschung GmbH

In case you forgot:

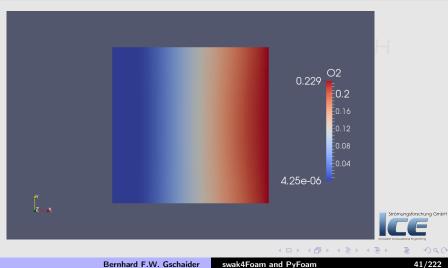
- Simple combustion case:
 - CH₄ coming in from the left
 - O₂ coming in from the right
 - Ignition in the middle
 - Outflow on top and bottom

Innovative Computational Engineering



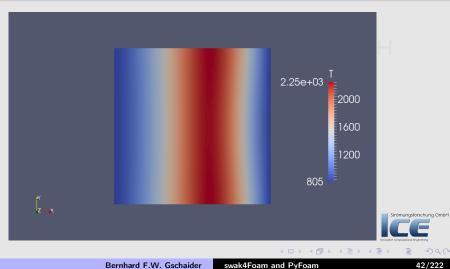
A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Getting the case Running Not so basic uses Basic plotting


Methan

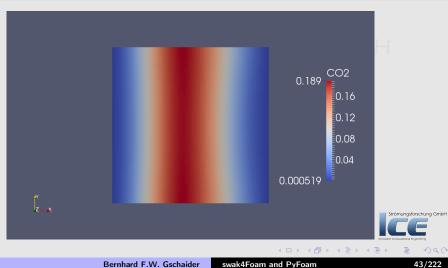
Bernhard F.W. Gschaider swak4Foam and PyFoam

Getting the case Running Not so basic uses Basic plotting

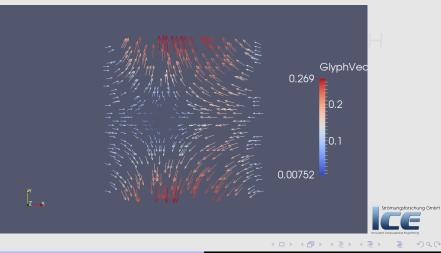

Oxygen

Bernhard F.W. Gschaider swak4Foam and PyFoam

Getting the case Running Not so basic uses Basic plotting


The flame

Bernhard F.W. Gschaider swak4Foam and PyFoam


Getting the case Running Not so basic uses Basic plotting

The products

Getting the case Running Not so basic uses Basic plotting

The flow

Bernhard F.W. Gschaider swak4Foam and PyFoam

Getting the case Running Not so basic uses Basic plotting

Conventions for utilities

- Utilities that have a OpenFOAM-application (solver, utility) as an argument (pyFoamPlotRunner.py for instance):
 - First PyFoam-options (start with --)
 - No arguments
 - Then the OpenFOAM-applications
 - Following options and arguments belong to OpenFOAM
- Other Utilities (pyFoamClearCase.py for instance)
 - Arguments and options can be mixed
 - Most utilities have the case they should work on as an argument
 - At least . for current directory is required

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

omungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

Getting a 1-page overview

A utility that prints information about a case in an easy-to-read form

```
> pyFoamCaseReport.py . --short-bc
```

```
Table of boundary conditions for t = 0
```

	air	frontAndBack	fuel	outlet
Patch Type	patch	empty	patch	patch
Length	40	8000	40	200
CH4	fixedValue	empty	fixedValue	inletOutlet
N2	fixedValue	empty	fixedValue	inletOutlet
02	fixedValue	empty	fixedValue	inletOutlet
Т	fixedValue	empty	fixedValue	inletOutlet
U	fixedValue	empty	fixedValue	zeroGradient
Ydefault	fixedValue	empty	fixedValue	inletOutlet
alphat	fixedValue	empty	fixedValue	zeroGradient
epsilon	fixedValue	empty	fixedValue	zeroGradient
k	fixedValue	empty	fixedValue	zeroGradient
mut	fixedValue	empty	fixedValue	zeroGradient
р	zeroGradient	empty	zeroGradient	fixedValue

Bernhard F.W. Gschaider

swak4Foam and PyFoam

rschung GmbH

46/222

Getting the case Running Not so basic uses Basic plotting

Exercise: finding information

Strömungsforschung GmbH

• What else can pyFoamCaseReport.py tell us?

Innovative Computational Engineering

(日) (同) (日) (日) (日)

Getting the case Running Not so basic uses Basic plotting

Clearing the results

We can clear the results with one command

```
> pyFoamClearCase.py .
> ls
O/
Allrun
Gnuplotting.analyzed/
PyFoamHistory
PyFoamHistory
PyFoamState.CurrentTime
PyFoamState.LastOutputSeen
PyFoamState.StartedAt
PyFoamState.TheState
constant/
counterFlameBase.foam
system/
```


(ロ) (四) (三) (三)

Getting the case Running Not so basic uses Basic plotting

Clear the PyFoam-stuff as well

Strömungsforschung GmbH

Additional data to clear can be specified

```
> pyFoamClearCase.py . --remove-analyzed --add="PyFoam*"
> 1s
0/
Allrun
PyFoamHistory
constant/
counterFlameBase.foam
system/
```

Innovative Computational Engineering

(ロ) (四) (三) (三)

Getting the case Running Not so basic uses Basic plotting

Friends of pyFoamPlotRunner.py

The functionality of pyFoamPlotRunner.py can be found in two other utilities:

pyFoamRunner.py Does all the PlotRunner does ... except plotting

- Applications:
 - running on text-only displays
 - long runs

pyFoamPlotWatcher.py Given a text file it parses it and plots

nnov the results stational Engineering

- Applications:
 - output of pyFoamPlotRunner.py
 - log files of OpenFOAM-runs (cluster for instance)

50/222

Getting the case Running Not so basic uses Basic plotting

Options for Runner and/or Plotter

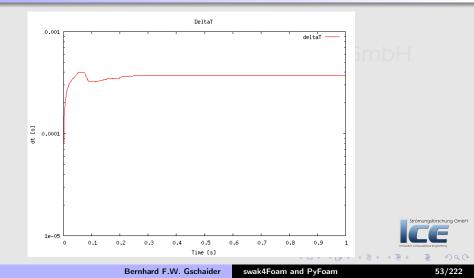
-clear-case Clears the case the way pyFoamClearCase.py does
 -progress Swallow output of the solver and only print current time on terminal

- -with-* Plot additional information like iteration, CPU-time etc
- -hardcopy Generate PNG-files of the plots (that's how graphs for this presentation were made)
- -write-files Write text files with the data from the plots
- -write-all-timesteps modifies controlDict to write all

• □ ▶ • • • • • • • • •

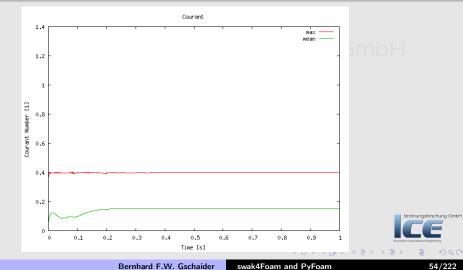
Getting the case Running Not so basic uses Basic plotting

Exercise: Run. Then Plot


1 Start the simulation with the runner-utility (no plotting)

- Make sure that data from the previous run is removed
- only print the progress
- Open another terminal window
 - Go to the directory
- 3 Use the plot watcher to plot data from the log file
 - In addition to the defaults plot at least the time-step

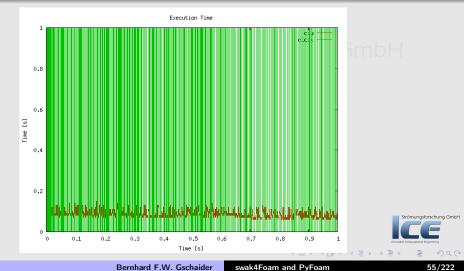
römungsforschung GmbH


Getting the case Running Not so basic uses Basic plotting

Timestep plot

Getting the case Running Not so basic uses Basic plotting

Courant number

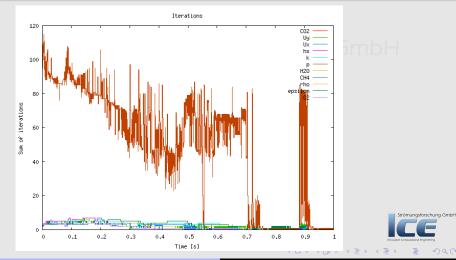


Bernhard F.W. Gschaider

swak4Foam and PyFoam

Getting the case Running Not so basic uses Basic plotting

Executiong time



Bernhard F.W. Gschaider

swak4Foam and PyFoam

Getting the case Running Not so basic uses Basic plotting

Iterations

Bernhard F.W. Gschaider

swak4Foam and PyFoam

56/222

Getting the case Running Not so basic uses Basic plotting

Outline

Introduction About this presentation What are we working with	Evaluations after the fact Function plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computational	EnglExporting data
Adding our own evaluations	6 Conclusions
Running Not so basic uses Basic plotting Advanced processing Case preparation Computational	Overriding the solution Adding particles 5 Data extraction Distributions Engl Exporting data

æ.

イロト イヨト イヨト イヨト

Getting the case Running Not so basic uses Basic plotting

Parallel running

- Decompose cases in one line
 - Create decomposeParDict
 - Run decomposePar

pyFoamDecompose.py . 2

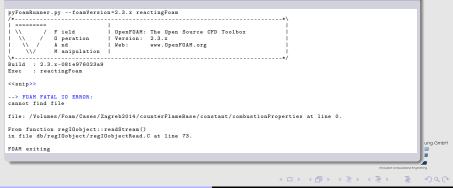
- Runner-utilities know how to handle parallel cases
 - Prepend mpirun (or different utilities if configured)
 - Automatically append -parallel
 - --autosense-parallel checks whether the case is decomposed or not and acts accordingly
 - Automatically gets the correct number of processors

pyFoamRunner.py --auto reactingFoam

Instead of

```
mpirun -n 2 reactingFoam -parallel
```

ヘロト ヘヨト ヘヨト ヘ


römungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

Fast switching of Foam-versions

- The switch --foamVersion allows fast selection of the used (Open)Foam-version. Just for the present command
 - · Also possible to select Debug-version

Current case incompatible with OpenFOAM 2.3

Getting the case Running Not so basic uses Basic plotting

"Simple" executiong

- Sometimes things should be executed in a different OpenFOAM-environment
 - Without log-files
 - Without assuming the Foam calling convention
- pyFoamExecute.py does that
- Example: the current Foam-version is experimental and has no working Paraview
 - Fall back to the paraview of the other Version

pyFoamExecute.py --foam=3.1 paraview

römungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

Saving away cases

• Archiving cases with all the things needed to reproduce

```
> pyFoamPackCase.py . --tarname=/tmp/baseFlame.tgz --base-name=theFlame
> tar tzf /tmp/baseFlame.tgz
theFlame/constant/RASProperties
theFlame/constant/chemistrvProperties
theFlame/constant/g
theFlame/constant/polyMesh/blockMeshDict
theFlame/constant/polyMesh/boundary
theFlame/constant/polyMesh/faces
theFlame/constant/polyMesh/neighbour
theFlame/constant/polyMesh/owner
theFlame/constant/polyMesh/points
theFlame/constant/reactions
theFlame/constant/thermo.compressibleGas
theFlame/constant/thermophysicalProperties
theFlame/constant/turbulenceProperties
theFlame/PvFoamHistorv
```


A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Getting the case Running Not so basic uses Basic plotting

Outline

Introduction	Evaluations after the fact
About this presentation What are we working with Before we start	Function plugins Manipulating the case Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback Inhomogeneous initial conditions
Getting the case Running Not so basic uses	Overriding the solution Adding particles
Basic plotting	6 Data extraction Distributions
Advanced processing Case preparation: Computational	l EnglExporting data
Adding our own evaluations	6 Conclusions

62/222

æ

Getting the case Running Not so basic uses Basic plotting

Temperature extremes

Hidden the output of reactingFoam is information about the temperature range

```
DILUPBiCG: Solving for hs, Initial residual = 0.00546778, Final residual = <brk>
        <cont> 8.5528e-08, No Iterations 4
T gas min/max = 292.977, 983.056
DICPCG: Solving for p, Initial residual = 0.11851, Final residual = <brk>
        <cont>8.22411e-07, No Iterations 49
```

- It would be cool to plot that as well
 - It is easy ... but we've got to learn about something complicated ...

Getting the case Running Not so basic uses Basic plotting

Regular expressions

- Regular expressions are very popular for analyzing textual data (pattern matching)
 - For instance in OpenFOAM for flexible boundary conditions
 - Python comes with a library for analyzing them
 - There are slightly different dialects
 - For instance there are slight differences between the regular expressions of Python and OpenFOAM
 - But in 90% of all cases they behave the same
- The following slide gives a quick glance
 - Usually you won't need much more for PyFoam
- There is a number of cool "regular expression tester" (enter that in Google) applications on the web
 - One example: http://regex101.com

trömungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

Regular expressions in 3 minutes

- 1 Most characters match only themself
 - For instance ab matches only the string "ab"
- 2 The dot (.) matches any character except a newline
 - Pattern a..a matches (among others) abba, aBBa, ax!a
- 3 The plus + matches the character/pattern before it 1 or more times
 - a.+a matches aba, abbbba but not aa
- 4 * is like + but allows no match too
 - a.*a matches aba, abbbba and also aa
- Parenthesis () group characters together. Patterns are numbered. They receive the number by the opening (
 - a((b+)a) would match abba with group 1 being bba and group 2 bb
- **(**) To match a special character like +-(). | prefix it with a $\$
 - To match (aa) you've got to write \(aa\)
 - Other special characters that occur frequently in OpenFOAM-output are []\{\}

Getting the case Running Not so basic uses Basic plotting

Matching the temperature

- The example string
- T gas min/max = 292.977, 983.056
 - · is matched by the regular expression
- T gas min/max = (.+), (.+)
 - with the groups
 - 1 292.977
 - 2 983.056
 - Beware: The / has to be "escaped"
 - Beware: Number of spaces has to be correct
 - Beware: Simpler expression

```
T gas min/max = (.+)
```

- Matches with group 292.977, 983.056
 - Not 292.977 like one would have hoped

Bernhard F.W. Gschaider

swak4Foam and PyFoam

イロト イヨト イヨト イヨト

trömungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

Testing the expression

Tegeldar expressions and - an online research processing	디그 IIII Bonjour - + bitm	Online regex tester and debugger: JavaScript, Python, PHP, and I COLOR ON COLOR OF	Python software Readable DexaSIM - Trac OpenFOAM *	
reget tester reget reget tester reget reget tester reget reget reget reget reget			,,,,,,,,,_,_,_,_,,_,,_,,,,	\square
<pre> community /f gos minimizes = (m), (m) / (minimizes = (mi</pre>		REGULAR EXPRESSION 1 swort	EXPLANATION •	
FUNCE OUTUPEICG: Solving for 120, Initial residual = 0.0071555, Final residual = 0.0071555, Fina	 community 		T gas min matches the characters T gas min literally (case sensitive)	
Depts to community setTINGS depts whitesacce depts	prre(php) javascript python TOOLS save regex	residual = 2.374156-07, No Iterations 3 OIUPBIGG: Solving for CHA: Initial residual = 0.00285705, Final residual = 1.45376-07, No Iterations 3 DIUPBIGG: Solving for CA: Initial residual = 0.00716585, Final residual = 2.37456-07, No Iterations 3 DIUPBIG: Solving for A, Initial residual = 0.00546778, Final r esidual = 0.5526-0239, No Iterations 4 diagonal: Solving for A, Initial residual = 0.11851, Final residual = 8.22411-07, No Iterations 40 diagonal: Solving for A, Initial residual = 0, Final residual = 0.22411-07, No Iterations 40	Image:	
	post to community SETTINGS display whitespace docrize syntax use dark theme	<pre>time step continuity errors : sum local = 5.12654e-07, global = -1 .03678e-09, cumulative = -1.05619e-07 DICPCG: Solving for p, Initial residual = 0.0175956, Final residu</pre>		Strömungsforschung GmbH
		SUBSTITUTION O		

Bernhard F.W. Gschaider

swak4Foam and PyFoam

67/222

Getting the case Running Not so basic uses Basic plotting

Matching floating point numbers

- The pattern to match all floating point numbers with regular expressions is quite complex:
 - Matching the sign
 - Exponential notation versus "normal"
- To make life easier PyFoam introduces a shorthand
 - If it finds the string %f% in a regular expression it replaces it with the correct regular expression
- This only works in PyFoam. Everywhere else this string will match %f%
- In our example:
- T gas min\/max = (%f%), (%f%)

römungsforschung GmbH

Getting the case Running Not so basic uses Basic plotting

The customRegexp-file

- If a file customRegexp is found in the case by a Plot-utility it is read
- It is in OpenFOAM-format:
 - a dictionary
 - all entries are dictionaries too
- The name of the entry is used to identify the data (for instance during writing)
- Most frequent entry in the dictionaries are:
 - expr This is required. A regular expression that a line must match. All groups (enclosed by ()) are interpreted as data and plotted
 - theTitle String with the title of the plot
 - titles List of words/strings. The names that the data items will get in the legend
- customRegexp is important enough for PyFoam to be automatically cloned

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

trömungsforschung GmbH

69/222

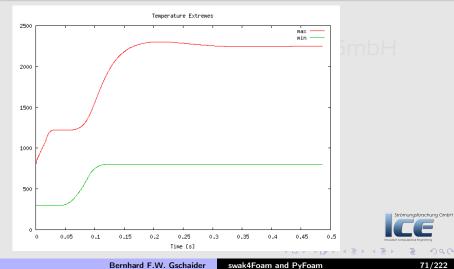
Getting the case Running Not so basic uses Basic plotting

First customRegexp

 In the case create with the text-editor of choice a customRegexp

customRegexp

```
temperatureExtremes {
    expr "Tugasumin\/maxuuu=u(%f%),u(%f%)";
    theTitle "TemperatureuExtremes";
    titles (
    min
    max
    );
}
```


Test it with the watcher

ヘロト ヘヨト ヘヨト ヘ

ng GmbH

Getting the case Running Not so basic uses Basic plotting

Temperature curve

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Outline

Introduction About this presentation	Evaluations after the fact Function plugins	
What are we working with	• • Manipulating the case	
Before we start	Setting boundary conditions	
2 Basic case setup	Boundary conditions with feedback	
Getting the case	Inhomogeneous initial conditions	
Running	Overriding the solution	
Not so basic uses	Adding particles	
Basic plotting	5 Data extraction	
3 Advanced processing	Distributions	
Case preparation Computationa	I EnglExporting data	

Adding our own evaluations

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Outline

Introduction About this presentation What are we working with	Evaluations after the fact Function plugins Manipulating the case		
Before we start	Setting boundary conditions		
2 Basic case setup	Boundary conditions with feedback		
Getting the case	Inhomogeneous initial conditions		
Running	Overriding the solution		
Not so basic uses	Adding particles		
Basic plotting	5 Data extraction		
3 Advanced processing	Distributions		
Case preparation Computation	nal Engl Exporting d ata		
Adding our own evaluations	6 Conclusions		

æ.

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Case preparation in OpenFOAM

- Usually done by executing a number of commands
 - blockMesh
 - other mesh utilities
 - setFields or similar to set up initial conditions
- Tedious if done by hand
 - but easy to automate with scripts
- Usually scripted with Allrun-scripts
 - Scripts do a lot of similar work
 - For instance copy 0.org to 0 to get "clean" initial conditions
 - But are not very robust in terms of error handling
- PyFoam offers an alternative

ヘロン 人間 とくほ とく

omungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Prepare case with PyFoam

- Create "clean" initial conditions
 - From now on we only edit the files in 0.org

mv 0 0.org

• Run the preparation utility

pyFoamPrepareCase.py

- This does
 - 1 clears old data from the case
 - 2 Copies 0.org to 0
 - 8 Runs blockMesh
- Could do a number of other things
 - evaluate templates
 - execute scripts

Bernhard F.W. Gschaider

swak4Foam and PyFoam

(ロ) (四) (三) (三)

trömungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Outline

Introduction About this presentation What are we working with	Evaluations after the fact Function plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computation	al Engl Exporting d ata
Adding our own evaluations	6 Conclusions

æ.

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

What are function-objects

Strömungsforschung GmbH

- Function objects are "plugins"
- · Loaded and initialized at the start of the simulation
- Executed at the end of each timestep
 - And at the end of the run
- OpenFOAM already has a number of functionObjects
 - swak4Foam adds a lot more

Strömungsforschung GmbH

77/222

ヘロト ヘヨト ヘヨト ヘ

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Adding function objects to a case

- Usually no function objects are available
- 2 entries in controlDict:

libs List with additional libraries to load

• function objects in the library are available from then on

functions Dictionary with function object specification

- names of the entries are used for output
- values are sub-dictionaries
 - Mandatory entry type determines type of the function object
 - All other entries depend on the function objectmungsforschung GmbH

A B A B A B A

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Adding simpleFunctionObjects

- oldest part of swak4Foam
 - used to be an independent project

controlDict

```
libs (
    "libsimpleFunctionObjects.so"
);
functions {
    carbonDioxide {
    type banana;
    }
}
```

From now on if a box is for controlDict it means "add this entry to functions"

Bernhard F.W. Gschaider swak4Foam and PyFoam

イロト イヨト イヨト イヨト

ng GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

The old banana-trick

- Getting a full list of function objects is easy
 - Just use banana as type (kiwi would work too)

```
> reactingFoam
<<snip>>
deltaT = 0.000398406
--> FOAM FATAL ERROR:
Unknown function type banana
Valid functions are :
40
(
correctThermo
dvnamicFunctionObjectListProxv
executeIfEnvironmentVariable
executeIfExecutableFits
executeIfFunctionObjectPresent
executeIfObjectExists
executeIfOpenFOAMVersionBiggerEqual
executeIfParallelSerial
executeIfStartTime
```

Bernhard F.W. Gschaider swak4Foam and PyFoam

rschung GmbH

80/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Range of carbon-dioxide

- volumeMinMax gets a list of fields
 - Calculates the minimum and maximum value of them and outputs it
 - To a file in special directory
 - To the terminal ... sometimes

controlDict

```
functions {
    carbonDioxide {
    type volumeMinMax;
outputControlMode timeStep;
outputInterval 1;
verbose <u>true;
fields (
    CO2
);
    }
}</u>
```

ng GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Description of the entries

Entries common to a lot of function objects
 verbose print results to the terminal.

 Otherwise they are "only" written to a file
 outputControlMode When should output be made.
 For a list of possible values use banana-trick
 outputInterval specific for timeStep. How many timesteps between outputs

 Specific entry for this FO:

 fields List of fields

・ロト ・ 一 ト ・ 手 ト ・

römungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Output of CO₂

This is the extra output we now see when running reactingFoam:

```
DILUPBICG: Solving for k, Initial residual = 0.005698, Final residual = <brk>
        <cont>1.54878e-07, No Iterations 3
ExecutionTime = 8.1 s ClockTime = 11 s
Courant Number mean: 0.124187 max: 0.397025 velocity magnitude: 0.362538
deltaT = 0.000275536
Range of C02 [ 0 , 0.0501254 ] [0 0 0 0 0 0 0 0]
Time = 0.0143082
Solving chemistry
diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No <brk>
        <comb>Iterations 0
```


83/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Exercise: Plot range of CO₂

Strömungsforschung GmbH

- Add expressions to the customRegexp to plot the range
 - Caution: [and] have meaning in regular expressions and must be escaped with a \backslash

Innovative Computational Engineering

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Plotting more information about the species

Strömungsforschung GmbH

- Just plotting the range of the species is pretty limited information
 - For all we know maximum could be only in one cell (all other cells are near the minimum)

Innovative Computational Engineering

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

It is time to go to the heart of swak

- Expressions are the core functionality of swak4Foam
 - Basically strings which are evaluated at run-time
 - Errors in the expression occur when the expression is evaluated. Not at start-up
- Expression syntax is modeled on the C++/C/Java-syntax for expressions
 - With some exceptions
 - Some additional OpenFOAM-specific things (like & for dot vector product)
 - Should be easy to understand even if you're not familiar with these programming languages on al Engineering
- Let me repeat myself: a complete documentation for them is in the *Incomplete Reference Guide*

86/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Adding swak-functionObjects

• Library simpleSwakFunctionObjects combines

- simpleFunctionObjects: collect data over time
- with the expressions of swak

controlDict

```
libs (
    "libsimpleFunctionObjects.so"
    "libsimpleSwakFunctionObjects.so"
);
```


A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A


Case preparation Adding our own evaluations Evaluations after the fact Function plugins

The simplest possible expression

Just one field

trömunasforschuna GmbH

controlDict

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

What swakExpression does

- Reads an expression and evaluates it
- But where?
 - That is what valueType says
 - internalField means "on the field"
 - another example is patch (on a patch specified by patchName)
 - For more see the reference guide
- Boils it down to one or more single numbers specified in accumulations

・ロト ・ 日 ・ ・ 日 ・

römungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Values for accumulations

min, max, average, sum these should be pretty self-explanatory median The value for which 50% of the distribution are smaller than this. More robust alternative to average quantile quantile0.25 for instance is the value for which 25% of the distribution are smaller than it range The difference of the quantile of $\frac{1+f}{2}$ and $\frac{1-f}{2}$. For instance range0.9 gives the range in which 90% of the values are (from the quantile 5% to 95%)

- smaller The fraction of the distribution that is smaller than a given value
 - bigger The inverse of smaller

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

weighted accumulations

- Take a *weight* of the values into account
- For the internalField the weights might be the cell volume
- Weighted values are usually physically more meaningful
 - Mesh with large differences in cell sizes
 - For average a tiny cell would contribute as much as a huge cell
 - This is usally not what we mean with "average temperature" as it depends on the discretization
 - weightedAverage does

$$\frac{\sum_{i} T_{i} V_{i}}{\sum_{i} V_{i}}$$

• or as we say in swak

sum(T*vol())/sum(vol())

omungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Expressions. Some general words

Strömungsforschung GmbH

- Expressions are always between ""
- Syntax is oriented on C++/C/Java
 - Strange things like &&, || etc
- "Usual" precedence rules
 - * before + for instance
- For a complete reference see The incomplete reference guide

trömungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Fields

- When swak finds an unknown name in an expression then it assumes that it is a field name
 - Looks for a field of that name in memory
 - Post-processing utilities also look on the disc
- Inserts the value of the field into the equation
 - With correct type (scalar, vector, tensor)
 - and location (cell-center, face-center)
- Expressions may fail because types don't fit
 - "You can't add a scalar on a surface to a vector at the cell-center"
 - Of course the error messages aren't that clear
 - Usually something about "Unexpected XYZ"

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

römungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Hint: Getting a list of the available fields

Adding a function object (from simpleFunctionObjects)

```
whichFields {
    type listRegisteredObjects;
}
```

• Prints a list of available fields (and non-fields):

Name	Туре	Autowrite		
CH4	volScalarField	Yes		
CH4_0	IOobject	No		
C02	IOobject	Yes		
CO2_0	IOobject	No		
H20	IOobject	Yes		
H20_0	IOobject	No		
N2	volScalarField	Yes		
02	volScalarField	Yes		
02_0	IOobject	No		rschung GmbH
RASProperties	die	ctionary No		
S	IOobject	No		
Т	volScalarField	Yes		preating
		۲ 🗆	▷ ★@ > ★ 돌 > ★ 돌 >	■
	Bernhard F.W. Gschaid	er swak4Foam and P	vFoam	94/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

The other species

- For the other species we would have to copy everything
 - but if functions is a dictionary we let OpenFOAM do the work

controlDict

```
specie02 {
    $specieCH4;
    expression "02";
}
specieH20 {
    $specieCH4;
    expression "H20";
}
specieC02 {
    $specieCH4;
    expression "C02";
}
```

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

ng GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

The new output

Rerunning reactingFoam produces more output

```
ExecutionTime = 191.39 s
                           ClockTime = 194 s
Courant Number mean: 0.150489 max: 0.39903 velocity magnitude: 0.270343
deltaT = 0.000369004
Range of CO2 [ 0 . 0.188742 ] [0 0 0 0 0 0]
Expression specieCH4 : min=1.31196e-05 weightedQuantile0.25=0.0226 <br/>
     <cont>weightedAverage=0.345197 weightedQuantile0.75=0.675 max=0.99792
Expression specie02 : min=4.24977e-06 weightedQuantile0.25=0.015 <br/>
     <cont>weightedAverage=0.0986023 weightedQuantile0.75=0.1736 max<brk>
     (cont) = 0.229422
Expression specieH20 : min=0.00042456 weightedQuantile0.25=0.024625 <br/>
     <cont>weightedAverage=0.0771507 weightedQuantile0.75=0.129923 max<br/>brk>
     (cont) = 0.154522
Expression specieCO2 : min=0.000518584 weightedQuantile0.25=0.0299 <br/>
     <cont>weightedAverage=0.0942367 weightedQuantile0.75=0.1587 max<br/>brk>
     (cont) = 0.188742
Time = 0.779336
                                                                                    rschung GmbH
```

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Plotting the species

- With our current knowledge we'd need four expressions in customRegexp
 - This would be tedious
 - We'd get four different plot windows
 - With more complicated chemical reactions the problem gets worse
- But as the outputs look quite similar the regular expressions offer a solution

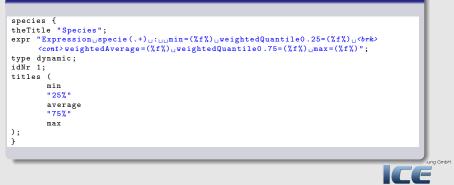
römungsforschung GmbH

97/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Dynamic Plotting

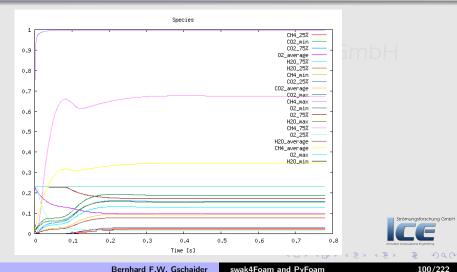
- Add to the dictionary in customRegexp an entry type
 - Value: dynamic
- Now PyFoam needs another entry: idNr
 - This is the index of the matching group that holds a name
 - Remember: groups are numbered by the occurrence of the (
 - Counting starts with 1
- For each name a different data-set is plotted
 - But all in the same graph
 - name is added to the titles



römungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Entry for species-plotting


customRegexp

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Too much information

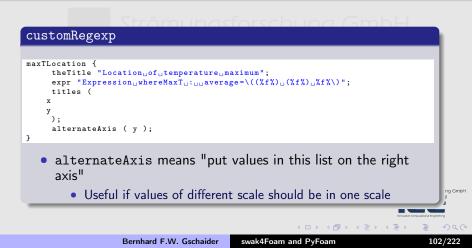
Bernhard F.W. Gschaider

swak4Foam and PyFoam

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

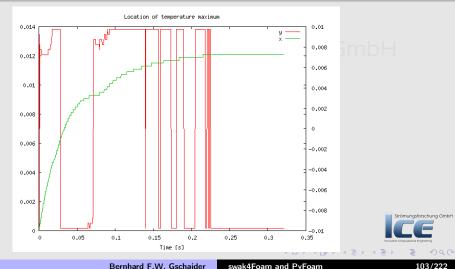
Getting the location of the maximum

 maxPosition(expr) means: "find the position of the maximum value of expr"


```
whereMaxT {
    $specieCH4;
    expression "maxPosition(T)";
accumulations (
    average
);
}
```

Produces this output inputational Engineering

```
Expression whereMaxT : average=(0.0121 -0.00975 -6.16298e-2
```


Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Plotting the location of the maximum temperature

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

The maximum moves to the right

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Calculating the stoechiometric ratio

Strömungsforschung GmbH

- The question is "Are there enough *O*₂-molecules in the cell to burn all *CH*₄"
 - Or are there too many

• The fractions that OpenFOAM uses are mass-fractions

• We need mole-fractions

Innovative Computational Engineering

104/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Variables

- Optional entry is variables
 - List of strings
 - Each string is of the form <name> = <expression>;
 - The semicolon is important
 - Means: Evaluate the expression and put it into a variable name
 - The defined variables can be used in
 - subsequent variable-specifications
 - expression
 - Values are forgotten afterwards

trömungsforschung GmbH

105/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

expressionField

The library swakFunctionObjects adds function objects that "only" use expressions

controlDict

```
libs (
    "libsimpleFunctionObjects.so"
    "libsimpleSwakFunctionObjects.so"
    "libswakFunctionObjects.so"
);
```

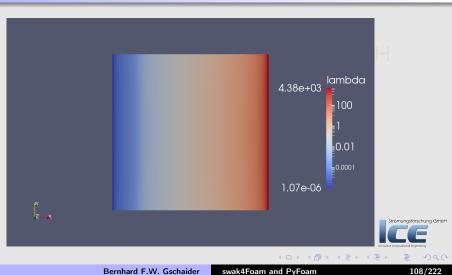
 expressionField calculates expression and puts it into a field named fieldName

106/222

ヘロト ヘヨト ヘヨト ヘ

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Calculating λ


controlDict

```
stoechiometric {
    type expressionField;
    fieldName lambda;
    autowrite true;
    outputControl timeStep;
    outputInterval 1;
    variables (
    "MCH4=12.0107+4*1.00794;"
    "MO2=2*15.9994;"
    );
    expression "(0.5*02/M02)/(max(CH4,1e-10)/MCH4)";
}
```


107/222

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Bernhard F.W. Gschaider swak4Foam and PyFoam

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Exercises: Getting numbers

Strömungsforschung GmbH

- Question: what could autowrite mean?
- Plot percentage of space where $\lambda > 1$
 - Add swakExpression
 - Extend customRegexp

Innovative Computational Engineering

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

What goes in must come out

- We want to check whether the mass-flows add up
- They should
 - After the initial phase
- Info: by convention in OpenFOAM phi is the mass flow on one face
 - Summing it up gives the total mass flow on a patch
- patchExpression calculates expression on patches
 - Patches specified in a list
 - Elements can be regular-expression

trömungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

First the mass-flows on the patches


```
massFlows {
   type patchExpression;
   valueType internalField;
   outputControlMode timeStep;
   outputInterval 1;
   patches (
".*"
   );
   expression "phi";
   accumulations (
   sum
   );
   verbose true;
}
```

ヘロト ヘヨト ヘヨト ヘ

111/222

Jung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Picking up the mass-flows

That should be easy by now

customRegexp

```
massFlows {
  theTitle "Mass_flows";
  expr "Expression_massFlows_on_(.+):_usum=(%f%)";
  type dynamic;
 idNr 1;
 titles (
 sum
  );
3
```


112/222

臣

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Getting values from somewhere else

- swak allows variables calculated "somewhere else"
- General notation is

<name>{<type>'<ename>}=<expression>;

- Meaning: Calculate expression on entity ename of type type and put result into name
 - Limitation: the result of expression must be uniform

For instance a sum, min, max, ...

- If only ename is given, then it is assumed that type is patch
- There is an extension to the syntax for multi-region cases stormageoretry generation
 - Look it up in the reference

・ロト ・ 一 ト ・ 手 ト ・

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

#include for variable lists

Strömungsforschung GmbH

Entry of the form

"#<name>;"

means "Get variable list from name and insert it here"

This allows splitting and reusing variable lists

römungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

One patch sums up

controlDict

```
massFlowSum {
    type swakExpression;
   valueType patch;
    patchName outlet;
    outputControlMode timeStep;
    outputInterval 1:
    verbose true;
    patchMF (
"fuelMF{fuel}=sum(phi):"
"airMF{patch'air}=sum(phi);"
    ):
    variables (
"#patchMF;"
   );
    expression "sum(phi)+fuelMF+airMF";
    accumulations (
average
    ):
}
```

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

E

ng GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Adding data to another graph

- We'd like to get all data into one graph, but
 - massFlowSum prints to a separate line
 - Doesn't fit the massFlows in customRegexp (average instead of sum)
- Putting it into the other graph:
 - Set type to slave
 - An additional entry master is needed for the graph that does the actual plotting
- No additional graphs window opened
- More than one slave plot can be added to a master
 - Currently a slave can't be dynamic

• □ ▶ • • • • • • • • •

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Send sum to the other graph

Strömungsforschung GmbH

customRegexp

```
massFlovSum {
    type slave;
    master massFlovs;
    expr "Expression_massFlowSum_:...average=(%f%)";
    titles (
    sum
    );
}
```

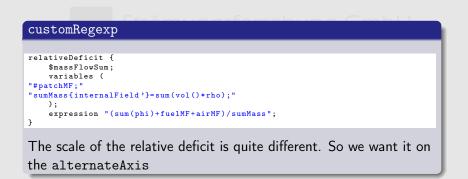

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

How big is the mass flow deficit?

• Compare to the amount of mass in the simulation

controlDict

```
relativeDeficit {
    $massFlowSum;
    variables (
    "#patchMF;"
    "sumMass{internalField'}=sum(vol()*rho);"
    );
    expression "(sum(phi)+fuelMF+airMF)/sumMass";
}
```



118/222

ヘロト ヘヨト ヘヨト ヘ

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

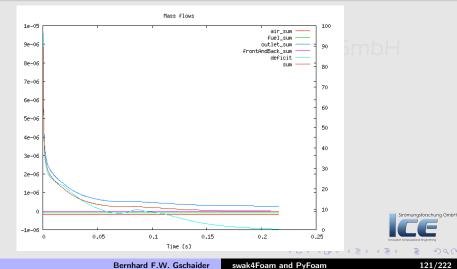
Append the deficit to the plot

A B > A B >

trömungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Changed entry (alternateAxis added)


customRegexp

```
massFlows {
    theTitle "Mass_flows";
    expr "Expression_massFlows_on_(.+):_u_sum=(%f%)";
    type dynamic;
    idNr 1;
    titles (
    sum
    );
    alternateAxis (
    deficit
    );
}
```


Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Mass-flows plotted

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Outline

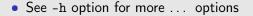
1 Introduction	Evaluations after the fact
About this presentation	Function plugins
What are we working with	Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	6 Data extraction
Output Advanced processing	Distributions
c Innovative Computation	ol Engi Exectiva data

Case preparation: Computational EnglExporting data Adding our own evaluations **(6) Conclusions**

122/222

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・


Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Sometime numbers speak louder than work

Sometimes you don't need fancy graphics. Just basic statistics

```
> fieldReport -time 0: CO2 -csvName CO2Development
<<snip>>
Time = 1
Reading Field CO2 of type volScalarField
Internal field:
Size | Weight Sum
                                 4000 L
                                                8e-08
Range (min-max)
                         0.000518583 |
                                           0.188743
Average | weighted
                            0.0942368
                                            0.0942368
Sum | weighted
                              376 947 L
                                          7.53895e-09
Median | weighted
                              0.0932
                                               0.0932
```

End

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Fancy numbers

- For more elaborate post-processing there is funkyDoCalc
 - Basically "Execute swakExpressions on data on disc"
- User specifies a file
 - Dictionary with sub-dictionaries
 - Format like swakExpression but without function-object-specific stuff (type, output*)
- Data is printed to screen
 - Like fieldReport there is the option to write a CSV-file

omungsforschung GmbH

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Outline

 Introduction About this presentation What are we working with Before we start Basic case setup 	Evaluations after the fact Function plugins Manipulating the case Setting boundary conditions Boundary conditions with feedback
Getting the case Running Not so basic uses Basic plotting 3 Advanced processing Case preparation	 Inhomogeneous initial conditions Overriding the solution Adding particles Data extraction Distributions EnglExporting data

125/222

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

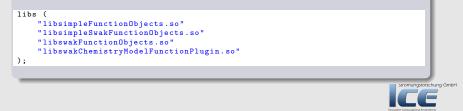
Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Why plugins

- There are functions that are of interest for some
 - But not for all
- Adding them to the regular grammar would
 - Complicate the grammar
 - Would bloat the basic swak library
 - be problematic because the solver may not have the required fields
 - Turbulence for instance
 - Would not solve the problem something very special is required
 - For instance a wrapper for a in-house chemistry solver

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Function plugins in swak


- Function plugins are special libraries
 - Loaded via libs-list
- They register new functions in a table
- The functions can be used like built-in function
 - Possible argument types (depend on the function) are
 - Expressions (but a very specific type -for instance vector- is required)
 - Numbers
 - nno Wordsomputational Engineering
- The first time the parser is called it prints a list of all available functions
 - With parameter descriptions

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Getting the reaction rates

- To see how fast each species is converted we need the reaction rates of the chemistry model
 - There is a special plugin for information about the chemistry

constrolDict

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Listing of the added functions

- First time an expression is evaluated swak prints a list of available plugin-functions is printed
 - No need to search for non-existing documentation

```
"Loaded plugin functions for 'FieldValueExpressionDriver':"
 psiChem_RR:
   "volScalarField psiChem RR(primitive/word speciesName)"
 psiChem RRError:
   "volScalarField psiChem_RRError()"
 psiChem_RRSumPositive:
   "volScalarField psiChem_RRSumPositive()"
 psiChem_Sh:
   "volScalarField psiChem_Sh()"
 psiChem dQ:
   "volScalarField psiChem_dQ()"
 psiChem_deltaTChem:
   "volScalarField psiChem deltaTChem()"
 psiChem tc:
   "volScalarField psiChem_tc()"
                                                                                rschung GmbH
 psiChem_updateChemistry:
   "volScalarField psiChem_updateChemistry(primitive/scalar timestep)"
```

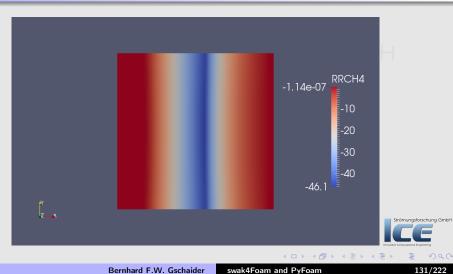
Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Reaction rate of CH₄

• Reaction rates are returned by psiChem_RR

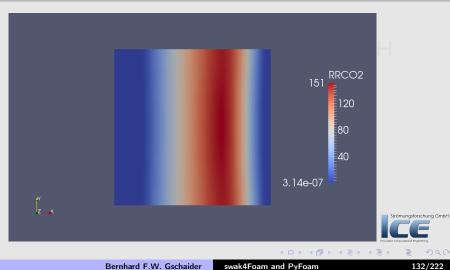
- Not calculated! The last values are used
- Argument is a word: the species name

controlDict

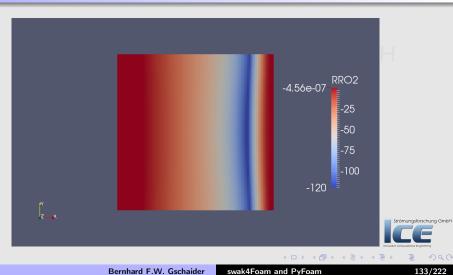

```
reactionRateCH4 {
   type expressionField;
   fieldName RRCH4;
   outputControl outputTime;
   autowrite true;
   expression "psiChem_RR(CH4)";
}
```

ヘロト ヘヨト ヘヨト ヘ

ung Gmb⊢


Case preparation Adding our own evaluations Evaluations after the fact **Function plugins**

Reaction rate CH_4


Case preparation Adding our own evaluations Evaluations after the fact **Function plugins**

Reaction rate CO₂

Case preparation Adding our own evaluations Evaluations after the fact **Function plugins**

Reaction rate O_2

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Exercise

Strömungsforschung GmbH

- Add expressions for other reaction rates
- Add up reaction rates for CH_4 and O_2

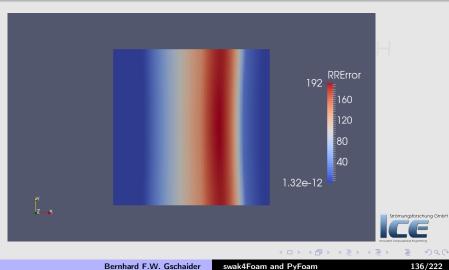
Innovative Computational Engineering

(ロ) (四) (三) (三)

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

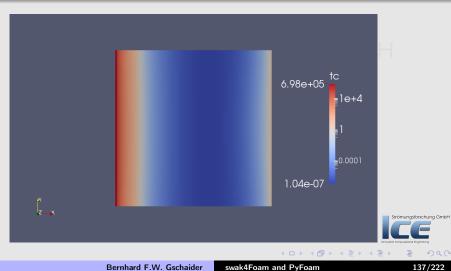
Additional information about the chemistry

- Error of the chemistry (sum of rates)
- t_c reported by the chemistry model


constrolDict

```
reactionRateError {
    $reactionRateCH4;
    fieldName RRError;
    expression "psiChem_RRError()";
}
reactionTime {
    $reactionRateCH4;
    fieldName tc;
    expression "psiChem_tc()";
}
```

ng GmbH


Case preparation Adding our own evaluations Evaluations after the fact **Function plugins**

Sum of reaction rates

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Time of chemistry

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Problem with the time-discretization

- Chemistry solver gets the current chemical composition Y_{old}
- Is asked to integrate for the Δt of the flow solver
 - For integration smaller time-steps are used
- Records the new composition Y_{new}
- Calculates reaction rate used in the flow solver as

$$RR = \frac{Y_{new} - Y_{old}}{\Delta t}$$

Innovative Computational Engineerin

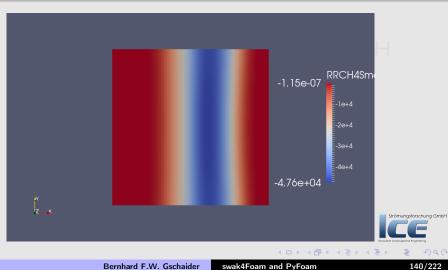
- This is "only" an average of the real reaction rates
 - May be missleading if reaction fast compared to Δt
- We want to find out: Is this a problem here?

・ロト ・日・ ・日・

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Calculating rate for smaller time-step

- Reaction rate for a smaller timestep is "nearer" to the real reaction rate
- Function psiChem_updateChemistry triggers a recalculation of the chemistry
 - Argument is Δt
 - Returns 0
 - Subsequent calls to psiChe_ use the new reaction rates


controlDict

```
reactionRateCH4Small {
    $reactionRateCH4;
    fieldName RRCH4Small;
    expression "psiChem_updateChemistry(0.0000001)+psiChem_RR(CH4)";
}
```

swak4Foam and PyFoam

Case preparation Adding our own evaluations Evaluations after the fact **Function plugins**

Different rate for CH_4

Case preparation Adding our own evaluations Evaluations after the fact Function plugins

Exercise

Strömungsforschung GmbH

- Write chemistry error for small timesteps
- Try rebuildng chemistry error by adding reaction rates

Innovative Computational Engineering

141/222

(ロ) (部) (注) (三)

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Outline

O Advanced processing

4 Manipulating the case

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Changing the case

Strömungsforschung GmbH

- Until now we did not change the results
 - But this will change

Innovative Computational Engineering

(ロ) (四) (三) (三)

Outline

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

O Advanced processing

Manipulating the case Setting boundary conditions

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

groovyBC

- This is probably the most popular part of swak
- It allows setting boundary conditions by writing swak-expressions

constrolDict

```
libs (
    "libsimpleFunctionObjects.so"
    "libsimpleSwakFunctionObjects.so"
    "libswakFunctionObjects.so"
    "libswakGhemistryModelFunctionPlugin.so"
    "libgroovyBC.so"
);
```

ヘロト ヘヨト ヘヨト ヘ

ng GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Using groovyBC

- Set the type of the boundary condition to groovyBC
- The three entries used are:

- These expressions are evaluated at every time-step
- It is good practice to set value to a sensible value as the expressions are not evaluated at startup

omungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions

Overriding the solution Adding particles

Velocity distribution for fuel

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution

Adding particles

What is new here

min, max that should be self-explanatory
pos Cell centers on the patch
pts Places of the points on the patch
.y Get the y-component of a vector
normal Unit vector normal to the faces
? : A expression of the form a ? b : c means "if the logical expression a is true use b, otherwise c "

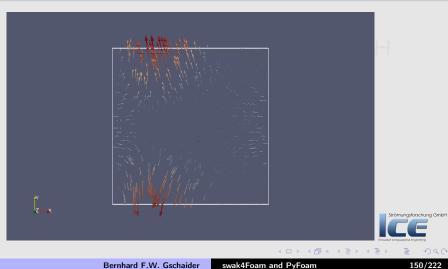
omungsforschung GmbH

Running

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Strömungsforschung GmbH

- Important: First do
- pyFoamPrepareCase.py
 - This copies 0.org to 0
 - Then run reactingFoam


149/222

(ロ) (四) (三) (三)

Setting boundary conditions

Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Changed velocity

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Exercises

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Strömungsforschung GmbH

- cos() is the usual trigonometric function
 - Try building a "smoother" inlet-profile
- time() is the current simualtion time
 - Try building a pulsating inlet condition

Innovative Computational Engineering

(ロ) (四) (三) (三)

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Outline

 Introduction About this presentation What are we working with Before we start Basic case setup Getting the case Running Not so basic uses Basic plotting 	Evaluations after the fact Function plugins Manipulating the case Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles Data extraction
 Advanced processing Case preparation: Computational Adding our own evaluations 	Distributions

152/222

E

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Adding feedback

- We don't want the simulation to become "too hot"
 - One way to achieve this is letting less oxygen in
- Usually the mass fraction of oxygen at inlet air is 0.27
 - If the average temperature in the "middle" is $> 1800 {\it K}$ the mass fraction is reduced to 0.1
- Definition of "middle":
 - The cells in a radius of 5mm around the center
 - We have to specify a cellSet with the name testRange

omungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

topoSources in swak

- Utilities like setSet or topoSet use sub-classes of topoSource
 - swak4Foam specifies such sub-classes
 - Allows using of expressions

controlDict

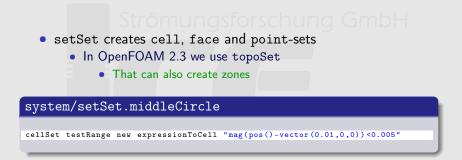
Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

(I)

Adding a script to create the mesh

- If pyFoamPrepareCase.py finds a script meshCreate.sh in the case directory it executes this instead of blockMesh
 - Used for non-standard meshes
 - Must include a call to blockMesh (if that is used)

meshCreate.sh


#! /usr/bin/env bash

```
rm -rf constant/polyMesh/sets
blockMesh
setSet -batch system/setSet.middleCircle
```

ung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Creating the cellSet

156/222

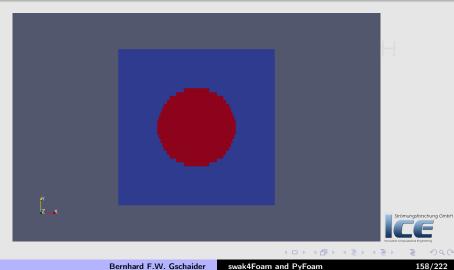
Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Preparing the case

Strömungsforschung GmbH

Execute pyFoamPrepareCase.sh to create the cell-set

Innovative Computational Engineering



157/222

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Red cells are part of testRange

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Boundary condition for "oxygen-sensor"

• Volume weighted average of T on cellSet with the name testRange

```
0.org/02
air
Ł
                      groovyBC;
    type
                      uniform 0.23;
    value
    variables (
"highVal=0.23:"
"lowVal=0.1:"
"threshold=1800;"
"targetT{cellSet'testRange}=sum(T*vol())/sum(vol());"
    ):
    valueExpression "targetT < threshold,.?.,highVal,.:,lowVal";</pre>
                                                                                          ng GmbH
3
```

Nitrogren

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Strömungsforschung GmbH

• Make sure that the sum of fractions is 1

0.org/N2			
air			
1	type value valueExpression	groovyBC; uniform 0.77; "1-02";	
5			

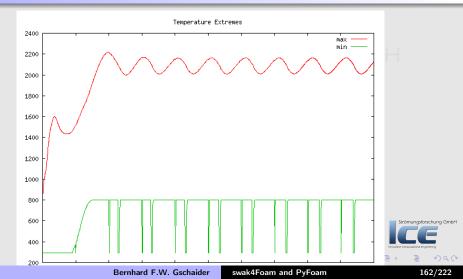
Strömungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Case setup and running

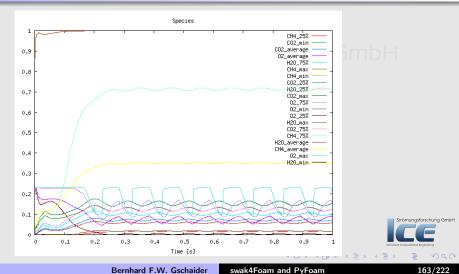
- We don't need to create the mesh again
 - The cellSet is already created
 - pyFoamPrepareCase.py has an option for that
 - Handy for big cases

```
> pyFoamPrepareCase.py . --no-mesh
<<snip>>
> pyFoamRunner.py --clear --progress reactingFoam
Clearing out old timesteps ....
t = 0.0276251
```



161/222

(ロ) (四) (三) (三)


Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Temperatures with feedback

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Species with feedback

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Exercises

- Add swakExpression for temperature in cellSet
 - Whichever accumulations seem suitable
 - Add as slave-plot to the other temperatures
- Change the trigger
 - *T_{max}* > 1800 in zone
 - Weighted with inverse difference to center (the nearer to the center the more influence a cell has)
- Make transition less sharp
 - Decrease O₂ linearly between 1800K and 1900K

164/222

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Setting boundary conditions Inhomogeneous initial conditions Overriding the solution Adding particles

Outline

Introduction About this presentation What are we working with Pafere we start	Evaluations after the fact Function plugins Manipulating the case Setting boundary conditions
Before we start 2 Basic case setup Getting the case Running Not so basic uses	Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles
Basic uses Basic uses G Advanced processing Case preparation: Computational Adding our own evaluations	Data extraction Distributions

æ,

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Ancient history

- The oldest part of swak4Foam is funkySetFields
 - It is where the idea of general expressions was first implemented
- Capabilities
 - Creating new fields
 - Manipulation existing ones
- Used for
 - Post-processing: "I need the temperature in Fahrenheit instead of Kelvin"
 - Pre-processing: "I need an alpha1 initial condition in the form of a semi-sphere"

166/222

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Command-line mode

- This mode allows rapid creation/manipulation of fields
 - But: No variables available
- The field for "Red cells are part of testRange" was created this way:

• Meaning: "Create a field named centerCells at time 0 that is 1 in the cellSet testRange and 0 everywhere else"

(I)

trömungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Boundary conditions of the created fields

Strömungsforschung GmbH

- The default for "regular" (not cyclic etc) patches is zeroGradient
- A list valuePatches can be specified
 - These are fixedValue and get their value from the next cell
- For existing fields the boundary conditions are erased
 - This is usually not desired
 - Use keepPatches to prevent this behavior

・ロト ・ 日 ・ ・ 日 ・

römungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Dictionary mode for funkySetFields

- If no field is specified funkySetFields works in "dictionary mode"
 - Reads dictionary with a list expression in it
 - In the list sub-dictionaries
 - Will be "executed" in sequence
 - Format of the dictionaries is a mixture of swakExpression and a funkySetFields-call
 - Options from the command line are entries in the dictionary

Bernhard F.W. Gschaider swak4Foam and PyFoam 169/222

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

trömungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Initializing chemistry

- Idea: let amount of CH₄ gradually rise from fuel to air
 - Other way round for O₂
- "Burning" would start sooner
- The presented solution is more general than necessary:
 - Calculate center of air-patch
 - Same for fuel
 - 2 Get "direction" by calculating difference
 - 3 For every cell "project" center onto direction to get distance to air/fuel
 - **4** Linear interpolate according to distance

(I)

römungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Calculate CH₄

system/funkySetFieldsDict.setInitialChemistry

```
expressions
initMethan
ſ
   field CH4;
    calcDistance (
"centerFuel{fuel}=sum(pos()*area())/sum(area());"
"centerAir{air}=sum(pos()*area())/sum(area());"
"fromTo=(centerAir-centerFuel)/mag(centerAir-centerFuel);"
"distance=(fromTo, &, (pos()-centerFuel))/mag(centerAir-centerFuel):"
    ):
    variables (
"#calcDistance:"
"valFuel{fuel}=sum(area()*$field)/sum(area()):"
"valAir{air}=sum(area()*$field)/sum(area());"
    ):
    expression "valFuel+distance*(valAir-valFuel)":
    keepPatches true;
3
```

Bernhard F.W. Gschaider

swak4Foam and PyFoam

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ng GmbH

171/222

Same for O₂

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

system/funkySetFieldsDict.setInitialChemistry

```
initOxygen
ſ
    field 02:
    calcDistance (
"centerFuel{fuel}=sum(pos()*area())/sum(area()):"
"centerAir{air}=sum(pos()*area())/sum(area());"
"fromTo=(centerAir-centerFuel)/mag(centerAir-centerFuel);"
"distance=(fromTo<sub>1</sub>,&<sub>1</sub>(pos()-centerFuel))/mag(centerAir-centerFuel);"
    ) •
    variables (
"#calcDistance:"
"valFuel{fuel}=sum(area()*$field)/sum(area()):"
"valAir{air}=sum(area()*$field)/sum(area()):"
    ):
    expression "valFuel+distance*(valAir-valFuel)":
    keepPatches true;
3
                                                                                          ng GmbH
```

172/222

The \$

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Strömungsforschung GmbH

Using \$name in expressions is relatively new in swak

- Means "use dictionary entry name"
- Supports relative references (see OpenFOAM Release-Notes)
- Knows how to handle dimensioned date (see swak Release-Notes)

Innovative Computational Engineering

Strömungsforschung GmbH

173/222

(ロ) (四) (三) (三)

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Strömungsforschung GmbH

174/222

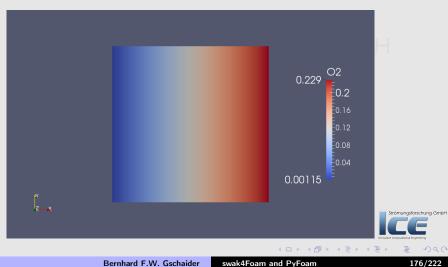
Make things add up to 1


```
initRest
{
    field N2;
    keepPatches true;
    expression "1-(CH4+02)";
}
test
{
    field sumSpec;
    create true;
    expression "CH4+02+N2";
}
);
```

(ロ) (四) (三) (三)

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Let pyFoamPrepareCase.py do the work


- If pyFoamPrepareCase.py finds a script file casePrepare.sh it executes this after the mesh creation
 - Main application: initial conditions
- Set up the case (including meshing):

pyFoamPrepareCase.py .

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Oxygen field

Bernhard F.W. Gschaider swak4Foam and PyFoam

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Exercises

Strömungsforschung GmbH

- Write temperature field Timp with temperature in Fahrenheit for post-processing
- Initialize U with a pattern that approximates the final solution

Innovative Computational Engineering

Strömungsforschung GmbH

177/222

・ロト ・ 日 ・ ・ ヨ ・ ・

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions **Overriding the solution** Adding particles

Outline

0	Introduction About this presentation What are we working with Before we start	Evaluations after the fact Function plugins Manipulating the case Setting boundary conditions
2	Basic case setup Getting the case Running Not so basic uses Basic plotting	Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles 5 Data extraction
6	Advanced processing Case preparation: Computational Adding our own evaluations	Distributions EnglExporting data 6 Conclusions

178/222

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions **Overriding the solution** Adding particles

Being cruel (to the solver)

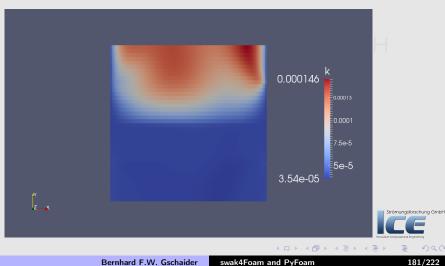
- Nice thing about simulations is that you can do things that are not feasible in real-life
 - Like "switching off" turbulence
- To demonstrate the influence of the turbulence ${\tt k}$ is limited in the lower half of the domain
 - To do this we use a function object manipulateField
 - The logical expression mask determines whether this cell will be changed

・ロト ・ 日 ・ ・ 日 ・

trömungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions **Overriding the solution** Adding particles

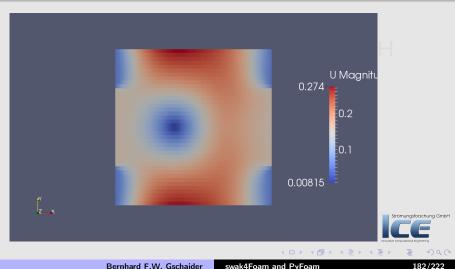
Setting k



180/222

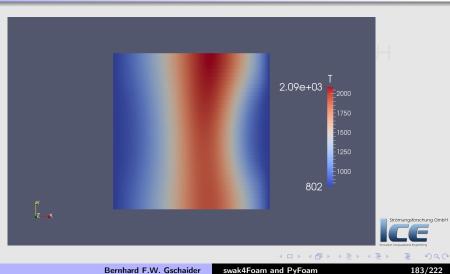
・ロ・ ・ 日・ ・ ヨ・ ・

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles


The manipulated field k

Bernhard F.W. Gschaider swak4Foam and PyFoam

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles


Velocity looks almost the same

Bernhard F.W. Gschaider swak4Foam and PyFoam

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Temperature differs

Bernhard F.W. Gschaider swak4Foam and PyFoam

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Outline

1 Introduction	Evaluations after the fact
About this presentation	Function plugins
What are we working with	4 Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computational	EnglExporting data
Adding our own evaluations	6 Conclusions

E

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Why add particles?

Strömungsforschung GmbH

- Because we can
- But sometimes there are sensible reasons:
 - Use particles for visualizing the flow
 - Solver doesn't support particles but we're interested in the way particles behave

Innovative Computational Engineering

185/222

ヘロト ヘヨト ヘヨト ヘ

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

ヘロト ヘヨト ヘヨト ヘ

Getting particle properties

Setting up the particle properties would be a training in itself

- We get settings from the tutorials
- Adapt them slightly
 - Next slides show only the changed places in the file

Copying sensible settings

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Change the injector

• Inject from the fuel patch

kinematicCloudProperties

```
// InjectionModel
InjectionModel
```

ConeInjection; PatchInjection;

```
// This goes below $ConeInjectionCoeffs
PatchInjectionCoeffs {
    $ConeInjectionCoeffs;
    patchName fuel;
    SOI 0.01;
    U0 (0.1 0 0);
}
```

(ロ) (四) (三) (三)

Jung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Adapt patch names

Strömunasforschuna GmbH

kinematicCloudProperties

```
PatchPostProcessingCoeffs
{
    maxStoredParcels 10000;
    patches (
        // in
        // out
    outlet
    );
}
```


188/222

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

ヘロト ヘヨト ヘヨト ヘ

Add function objects for clouds

Strömunasforschung GmbH

controlDict

```
libs (
    "libsimpleFunctionObjects.so"
    "libsimpleSwakFunctionObjects.so"
    "libswakFunctionObjects.so"
    "libswakChemistryModelFunctionPlugin.so"
    "libgroovyBC.so"
    "libswakTopoSources.so"
    "libsimpleLagrangianFunctionObjects.so"
);
```


189/222

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

The function object that moves the particles

- Specification of fields that particles uses as the continuous phase
 - Could as well be completely different fields (for instance an expressionField)

controlDict

1 1 1	Particles { type evolveKinematicCloud; cloudName kinematicCloud; rhoName rho; UName U; muName mu;	
-		
		(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Running with particles

```
> pyFoamRunner.py --clear --progress reactingFoam
<<snip>>
Manipulated field k in 864 cells with the expression "inK"
--> Cloud: kinematicCloud
Added 3 new parcels
Cloud: kinematicCloud
Total number of parcels added = 465
Total mass introduced = 1.37407e-05
Current number of parcels = 303
Current mass in system = 8.95362e-06
Time = 0.0515972
Solving chemistry
```


191/222

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

römungsforschung GmbH

192/222

Problems with the particles

Strömungsforschung GmbH

- Run starts well
 - but fails before writing the first time
- Finding that kind of problem can be tedious
 - "I wish it had crashed after writing. Then I could have a look in Paraview"
- swak has a solution
 - Surprise: a function-object

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Core-dumps for cases

- This saves the last three time-steps and in case of a crash writes them
 - Caution: use it only when needed as it will require a lot of memory
 - And a little CPU-time

constrolDict

```
lastThreeTimesteps {
   type writeOldTimesOnSignal;
   numberOfTimestepsToStore 3;
   writeCurrent true;
}
```

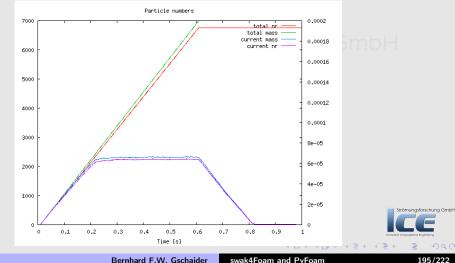
・ロ・ ・ 日・ ・ ヨ・ ・

ng GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

The last timesteps

After the crash: > 1s 0/ 0.0507994/ 0.0510653/ 0.0513313/ 0.0515972/ <<ssnip>: > less 0.0515972/lagrangian/kinematicCloud/U


- Inspection shows that some particles have very high velocities
 - Reason can only be guessed
 - But if limitLowerK is disabled it runs well

ヘロト ヘヨト ヘヨト ヘ

trömungsforschung GmbH

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Particles on the left, Mass on the right

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Setting boundary conditions Boundary conditions with feedback Inhomogeneous initial conditions Overriding the solution Adding particles

Exercises

- Try to set up customRegexp to reproduce the previous graph
- Print statistics about the velocity of the particles relative to the gas phase
 - Adding libswakLagrangianParser.so to libs adds a valueType cloud for swakExpression
 - In a cloud expression fluidPhase(U) gives the gas velocity at the current particle position
 - U is the particle velocity
 - A sub-dictionary interpolationSchemes will be required
- You'll have to rely on the banana-trick

ヘロト ヘヨト ヘヨト ヘ

omungsforschung GmbH

Distributions Exporting data

Outline

Introduction	Evaluations after the fact
About this presentation	Function plugins
What are we working with	• Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	Data extraction
3 Advanced processing	Distributions
Case preparation Computation	nal EnglExporting data
Adding our own evaluations	6 Conclusions

æ,

Distributions Exporting data

Outline

1 Introduction	Evaluations after the fact
About this presentation	Function plugins
What are we working with	• Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	Data extraction
3 Advanced processing	Distributions
Case preparation Computation	al EngiExporting data
Adding our own evaluations	a Conclusions

198/222

æ

swak4Foam and PyFoam Bernhard F.W. Gschaider

Distributions Exporting data

Why distributions

- Sometimes the single values from the accumulations are not enough information
 - but the full data-set is too much
- Information like "How many cells have a temperature between 1000 and 2000" can be found in distributions
- swak4Foam has 2 kinds of distributions
 - Distribution of a quantity
 - Average value of a quantity as a function of another
 - Easier to understand: "Average pressure as a function of the height"

199/222

イロト イヨト イヨト イ

Distributions Exporting data

Quick distribution primer

- swakExpressionDistribution is quite similar to swakExpression
 - Calculates expression and the computes how it is distributed
 - Expression weight determines how each value is weighted
 - For internal fields the cell volume is physically correct
 - But sometime something different is needed
 - Logical expression mask determines whether this value is actually used for the distribution
 - Allows things like "distribution of T, but only where alpha1 smaller than 0.5" and Engineering
- distributionBinWidth determines how coarse/fine the distribution is sampled
 - Value will be adapted if needed, but choose a sensible starting and value

Distributions Exporting data

Distribution of the temperature

constrolDict

```
distributionT {
   type swakExpressionDistribution;
   valueType internalField;
   outputControlMode deltaT;
   outputInterval 1;
   outputDeltaT 0.01;
   verbose true;
   expression "T";
   writeTimeline true;
   writeDistribution true;
   weight "vol()";
   mask "true";
   distributionBinWidth 20;
}
```


イロト イヨト イヨト イヨト

Jung GmbH

Distributions Exporting data

outputControlMode deltaT

- This is swak-specific
- Used in cases where
 - Output every timestep would be too much data
 - Only at output-times would not be enough
- Executes the function object every outputDeltaT seconds (simulation time)
- Does not manipulate the time-stepping
 - Therefor will not be exactly outputDeltaT apart
 - But it tries

ămunasforschung GmbH

202/222

Distributions Exporting data

Average T on the x-axis

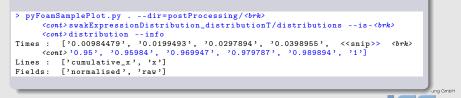
• Expression abscissa is the axis on which the averages are taken

controlDict

```
distributionToverX {
    $distributionT;
    type swakExpressionAverageDistribution;
    abscissa "pos().x";
    binNumber 50;
    valueIfZero 0;
}
```

romungsrorschung GmbH

203/222


イロト イヨト イヨト イヨト

Distributions Exporting data

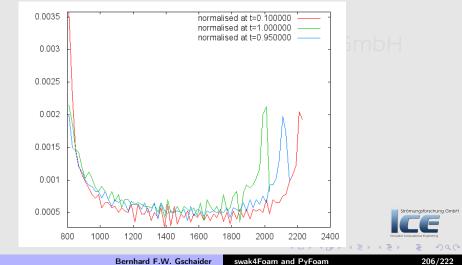
Plotting distribution data

- pyFoamSamplePlot.py assists in the plotting of data from sample
 - But it can do distributions too

Getting information about the available data

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Distributions Exporting data


Using gnuplot

- pyFoamSamplePlot.py (and pyFoamTimelinePlot) do not plot themselves
 - They only create commands for gnuplot

```
> pyFoamSamplePlot.py . --dir=postProcessing/ <brk>
               <cont>swakExpressionDistribution_distributionT/distributions --is-<br/>
               <cont>distribution --line=x --field=normalised --mode=complete --time<brk>
               \langle cont \rangle = 0.1 --time=1 --time=0.95
set term png
set output " <br/> <br/>
               <cont> postProcessing_swakExpressionDistribution_distributionT_distributions <br/> <br/>
              <cont>.png"
plot [][0.000275:0.003575] "./postProcessing/<br/>
               <cont>swakExpressionDistribution_distributionT/distributions/0.1/<br/>
               <cont>expression_distribution_x" using 1:2 title "normalised_at_t<br/>t<br/>brk>
               <cont>=0.100000" with lines , "./postProcessing/<brk>
               <cont>swakExpressionDistribution_distributionT/distributions/1/<br/>
               <cont> expression_distribution_x" using 1:2 title "normalised_at_t<br/>ork>
               <cont>=1.000000" with lines , "./postProcessing/<brk>
               <cont>swakExpressionDistribution_distributionT/distributions/0.95/<br/>
                                                                                                                                                                                                                                  rschung GmbH
               <cont> expression distribution x" using 1:2 title "normalised, at, t <brk>
              \langle cont \rangle = 0.950000 with lines
> pyFoamSamplePlot.py . --dir=postProcessing/<br/>
               <cont>swakExpressionDistribution distributionT/distributions --is-<br/>
               <cont>distribution --line=x --field=normalised --mode=complete --time<br/>brk>
                                                     Bernhard F.W. Gschaider
                                                                                                                  swak4Foam and PyFoam
                                                                                                                                                                                                                               205/222
```

Distributions Exporting data

Distribution of the temperatures

Bernhard F.W. Gschaider

swak4Foam and PyFoam

Distributions Exporting data

Exercises

Strömungsforschung GmbH

- Distribution of the velocity
- Distribution of CO_2 as a function of T
- Plot the other distribution

nnovative Computational Engineering

ヘロト ヘヨト ヘヨト ヘヨ

Distributions Exporting data

Outline

1 Introduction	Evaluations after the fact
About this presentation	Function plugins
What are we working with	• • • • • • • • • • • • • • • • • • •
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computation	nal EnglExporting data
Adding our own evaluations	6 Conclusions

E

Distributions Exporting data

Writing data

- Instead of plotting pyFoamSamplePlot.py and pyFoamTimelinePlot can write data
 - For data-sets of different sizes the have to be --resample'd

Writing CSV and Excel

• Now use the spreadsheet of your liking

ヘロト ヘヨト ヘヨト ヘ

Distributions Exporting data

"Replaying" long log files

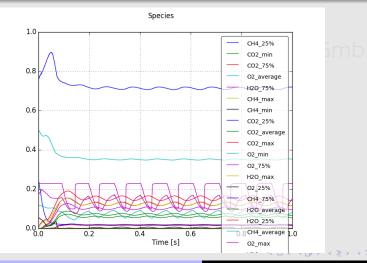
- Sometimes processing long log-files with pyFoamLogWatcher.py can take some time
 - · Log-files with 1 GB have been seen in the wild
- Sometimes the log-files are gone
 - But the data directory is still there
- If the case was run with PyFoam there are *pickled* versions of the plot data
 - And also the run data nat Engineerin
- This can be read and plotted by a special utility
 - Not with gnuplot but with matplotlib. A bit more aesthetic.

ヘロト ヘヨト ヘヨト ヘ

Distributions Exporting data

Redoing the plots

- This is pickled-mode
 - Network-mode is ... advanced


```
> pyFoamRedoPlot.py --pickle-file PyFoamRunner.reactingFoam.analyzed/<br/>
     <cont>pickledPlots
Found 12 plots and 17 data sets
Adding line 11
Adding line 10
Adding line 13
<<snip>>
Plotting 11 : massFlows
Plotting 10 : particles
Plotting 12 : maxTLocation
Plotting 1 : linear
Plotting 3 : bounding No data - skipping
Plotting 2 : continuity
Plotting 5 : courant
Plotting 4 : iterations
Plotting 7 : execution
                                                                                    rschung GmbH
Plotting 6 : timestep
Plotting 9 : species
Plotting 8 : temperatureExtremes
```

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

211/222

Distributions Exporting data

Redone species plot

Bernhard F.W. Gschaider

swak4Foam and PyFoam

212/222

Strömungsforschung GmbH

Distributions Exporting data

Using data in numpy, scipy, pandas

- numpy and friends offer a great platform for processing data
 - Even better with ipython notebooks
- pyFoamRedoPlot.py, pyFoamTimelinePlot.py and pyFoamSamplePlot.py offer the possibility to directly export to this
- --interactive-after-executiong works for almost all PyFoam Utilities
 - Drops the user to a Python-shell
 - ipython if possible a Engineering
 - The self-object holds data from the utility
 - Most of it with self.getData()
- Knowing Python is a plus

213/222

Distributions Exporting data

Getting the data from a run

On the shell

```
> pyFoamRedoPlot.py --pickle-file PyFoamRunner.reactingFoam.analyzed/<br/>
     <cont>pickledPlots --interactive-after-execution --pandas-data
Found 12 plots and 17 data sets
Adding line 11
<<snip>>
Plotting 9 : species
Plotting 8 : temperatureExtremes
Dropping to interactive shell ... found IPython ... up-to-date IPython
Python 2.7.6 (default, Nov 19 2013, 19:15:05)
Type "copyright", "credits" or "license" for more information.
IPvthon 2.1.0 -- An enhanced Interactive Pvthon.
?
          -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
     -> Python's own help system.
help
object? -> Details about 'object', use 'object??' for extra details.
                                                                                   ng GmbH
In [1]:
```

Bernhard F.W. Gschaider

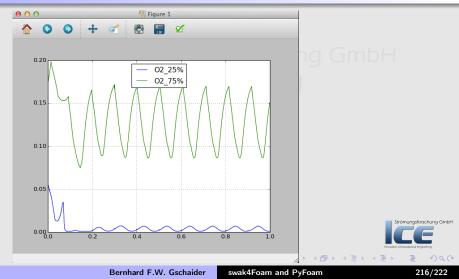
swak4Foam and PyFoam

214/222

Distributions Exporting data

Plotting only O₂

On the ipython-shell


```
In [1]: %matplotlib
Using matplotlib backend: Qt4Agg
In [2]: specData=self.getData()["plotData"]["species"]
In [3]: specData[["02 25%","02 75%"]].plot()
Out[3]: <matplotlib.axes.AxesSubplot at 0x10d669210>
In [4]: (specData["02 75%"]-specData["02 25%"]).describe()
Out[4]:
         1683.000000
count
mean
            0.122822
std
           0.028402
           0.073966
min
25%
           0.094794
50%
           0.123427
75%
           0.149328
           0.167547
max
dtype: float64
In [5]:
```


ng GmbH

Distributions Exporting data

Plot from the shell

Outline

Introduction About this presentation What are we working with	Evaluations after the fact Function plugins Manipulating the case
Before we start	Setting boundary conditions
2 Basic case setup	Boundary conditions with feedback
Getting the case	Inhomogeneous initial conditions
Running	Overriding the solution
Not so basic uses	Adding particles
Basic plotting	5 Data extraction
3 Advanced processing	Distributions
Case preparation Computation Adding our own evaluations	al EnglExporting data Conclusions

217/222

훈.

Further reading

- This presentation only covered parts of PyFoam and swak4Foam, but there is further information available:
 - On the OpenFOAM-wiki:
 - http://openfoamwiki.net/index.php/Contrib/swak4Foam in the section *Further Information* are links to previous presentations
 - http://openfoamwiki.net/index.php/Contrib/PyFoam in section Other material
 - The Examples directory of the swak-sources
 - Did I mention the Incomplete reference guide for swak
 - The --help-option of the PyFoam-utilities

218/222

• How often was *The incomplete swak4Foam reference* mentioned today?

Innovative Computational Engineering

219/222

ヘロト ヘヨト ヘヨト ヘヨ

The exercises

- Most probably by the time we've reached this slide I said "Please stop typing, we're running out of time"
- Nevertheless you're encouraged to try the examples yourself
 - and do the exercises
- I'm willing to help you with the exercises in the next few weeks
 - To do so I created a Reddit http://www.reddit.com/r/swakPyFoam/
 - Will start a thread there with the name of this presentation
 - Post your questions there and brag about your solutions
 - Don't spam the message board. Others will be annoyed
 - Don't EMail. Others can't read it

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Goodbye to you

Innovative Computational Engineering

221/222

(ロ) (四) (三) (三)

License of this presentation

This document is licensed under the *Creative Commons Attribution-ShareAlike 3.0 Unported* License (for the full text of the license see http:

//creativecommons.org/licenses/by-sa/3.0/legalcode). As
long as the terms of the license are met any use of this document is
fine (commercial use is explicitly encouraged).
Authors of this document are:

Bernhard F.W. Gschaider original author and responsible for the strange English grammar. Contact him for a copy of the sources if you want to extend/improve/use this presentation