
Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

swak4Foam and PyFoam
One hot case

Bernhard F.W. Gschaider

HFD Research GesmbH

Exeter, United Kingdom, Europe
24. July 2017

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 1 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline I

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields
First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 2 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline II
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 3 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 4 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

This presentation

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 5 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

This presentation

The topic

Two programs/libraries/toolkits
swak4Foam
PyFoam

Very different
What they have in common

Used with OpenFOAM
Written by me

I usually use them together
Because in their difference they complement each other

Therefor this presentation tries to introduce them together

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 6 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

This presentation

Intended audience and aim

Intended audience for this presentation:
people who already worked a bit with OpenFOAM
worked a bit means: been through the tutorials and set up a case

on their own
have heard that PyFoam and swak4Foam exist

Aim of the presentation
Enable user to start using PyFoam and swak4Foam
No programming

The presentation is designed so that all steps can be reproduced
using the information on the slides

No training files are provided

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 7 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

This presentation

Format of the presentation

This is a hands-on tutorial
We will use a standard tutorial case
Modify it till it doesn’t look like the original
No additional files are needed

Everything you have to enter will be spelled out on the slides
But to be sure: intermediate states will be available as download

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 8 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

This presentation

Limitation

In 2 hours we can only give superficial overview of the two packages
It is not sure whether we’ll even be able to complete it

For a complete reference of the swak-expressions have a look at the
Incomplete reference guide that comes with swak

Expressions are completely described
Almost everything else is missing

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 9 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Who is this?

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 10 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Who is this?

Bernhard Gschaider

Working with OpenFOAM™ since it was released
Still have to look up things in Doxygen

I am not a core developer
But I don’t consider myself to be an Enthusiast

My involvement in the OpenFOAM™-community
Janitor of the openfoamwiki.net
Author of two additions for OpenFOAM™

swak4foam Toolbox to avoid the need for C++-programming
PyFoam Python-library to manipulate OpenFOAM™ cases

and assist in executing them
In the admin-team of foam-extend
Organizing committee for the OpenFOAM™ Workshop

The community-activies are not my main work but collateral damage
from my real work at . . .

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 11 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Who is this?

Heinemann Fluid Dynamics Research GmbH

The company

Subsidary company of
Heinemann Oil

Reservoir Engineering
Reservoir management

Description

Located in Leoben, Austria
Works on

Fluid simulations
OpenFOAM™ and
Closed Source

Software development for
CFD

mainly OpenFOAM™

Industries we worked for
Automotive
Processing
. . .

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 12 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

What are we working with

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 13 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

What are we working with

What is PyFoam

PyFoam is a library for
Manipulating OpenFOAM-cases
Controlling OpenFOAM-runs

It is written in Python
Based upon that library there is a number of utilities

For case manipulation
Running simulations
Looking at the results

All utilities start with pyFoam (so TAB-completion gives you an overview)
Each utility has an online help that is shown when using the --help-option
Additional information can be found

on http://openfoamwiki.net

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 14 / 144

http://openfoamwiki.net

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

What are we working with

What is swak4Foam

From http://openfoamwiki.net/index.php/Contrib/swak4Foam

swak4Foam stands for SWiss Army Knife for Foam. Like that knife it
rarely is the best tool for any given task, but sometimes it is more

convenient to get it out of your pocket than going to the tool-shed to get
the chain-saw.

It is the result of the merge of
funkySetFields
groovyBC
simpleFunctionObjects

and has grown since
The goal of swak4Foam is to make the use of C++ unnecessary

Even for complex boundary conditions etc

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 15 / 144

http://openfoamwiki.net/index.php/Contrib/swak4Foam

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

What are we working with

The core of swak4Foam

At its heart swak4Foam is a collection of parsers (subroutines that
read a string and interpret it)

"T-273.15" is interpreted as "get the field T and subtract 273.15
from it (not changing the field, but creating a new one)"

For expressions on OpenFOAM-types
fields
boundary fields
other (faceSet, cellZone etc)

. . . and a bunch of utilities, function-objects and boundary
conditions that are built on it
swak4foam tries to reduce the need for throwaway C++ programs
for case setup and postprocessing

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 16 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Before we start

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 17 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Before we start

Command line examples

In the following presentation we will enter things on the command line.
Short examples will be a single line (without output but a ">" to
indicate input)

> ls $HOME

Long examples will be a grey/white box
Input will be prefixed with a > and blue
Long lines will be broken up

A pair of <brk> and <cont> indicates that this is still the same line in the
input/output

«snip» in the middle means: "There is more. But it is boring"

Long example

> this is an example for a very long command line that does not fit onto one line of the slide <brk>
<cont> but we have to write it anyway

first line of output (short)
Second line of output which is too long for this slide but we got to read it in all its glory and<brk>

<cont> will be probably broken

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 18 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Before we start

Work environment

You will use two programs
A terminal
A text-editor

For the text-editor you have the choice (these should be installed):
Emacs (king of text-editors)
VI
Kate with KDE
Gedit with Gnome
nano
jedit
. . .

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 19 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Before we start

Getting onto the same page

You all signed for your username/password?
Log into your laptop

The machine has everything we need preinstalled
OpenFOAM 4.1

activate with the command of41

swak4foam
PyFoam
Text editors: emacs, vim, gedit

Open a shell and set us up for work

> mkdir swakAndPyFoam
> cd swakAndPyFoam
> of41

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 20 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Before we start

Make sure PyFoam is working

There is a utility that helps make sure that PyFoam is working
and gives valuable information for support

Getting the version

> pyFoamVersion.py
Machine info: Darwin | bgs -cool -greybook | 16.6.0 | Darwin Kernel Version 16.6.0: Fri Apr
14 16:21:16 PDT 2017; root:xnu -3789.60.24~6/ RELEASE_X86_64 | x86_64 | i386

Python version: 3.5.3 (default , Apr 23 2017, 18:09:27)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang -800.0.42.1)]

Python executable: /opt/local/bin/python

Python 3 is supported with PyFoam
PYTHONPATH: /Users/bgschaid/private_python :/Users/bgschaid/private_python:

Location of this utility: /Users/bgschaid/Development/OpenFOAM/Python/PyFoam/bin/pyFoamVe
rsion.py

Version 1706 (reported as number 1706)Fork openfoam of the installed 27 versions:
extend -3.0 : /Users/bgschaid/foam/foam -extend -3.0
extend -3.1 : /Users/bgschaid/foam/foam -extend -3.1

<<snip>>
openfoamplus -v1706 : /Users/bgschaid/OpenFOAM/OpenFOAM -v1706
openfoamplus -v3.0+ : /Users/bgschaid/OpenFOAM/OpenFOAM -v3.0+

pyFoam -Version: 0.6.9- development

Path where PyFoam was found (PyFoam.__path__) is [’/Users/bgschaid/private_python/PyFoam ’]

Configuration search path: [(’file ’, ’/etc/pyFoam/pyfoamrc ’), (’directory ’, ’/etc/pyFoam/pyfoamrc.d’), (’file ’, ’/<brk>
<cont> Users/bgschaid /. pyFoam/pyfoamrc ’), (’directory ’, ’/Users/bgschaid /. pyFoam/pyfoamrc.d’)]

Configuration files (used): [’/Users/bgschaid /. pyFoam/pyfoamrc ’, ’/Users/bgschaid /. pyFoam/pyfoamrc.d/testit.cfg ’]

Installed libraries:
cython : Yes version: 0.25.2
cProfile : Yes
docutils : Yes version: 0.13.1
Gnuplot : No Not a problem. Version from ThirdParty is used
hotshot : No Not a problem. Can ’t profile using this library
line_profiler : No Not a problem. Can ’t profile using this library

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 21 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Before we start

pyFoamVersion.py

Information the utility gives
Machine
Used python
PYTHONPATH (where additional libraries are searched)
Information about the used PyFoam

Where configuration files are sought
Installed libraries relevant for PyFoam

With version if possible

This information helps diagnosing problems
Copy this output when reporting problems that might be associated
with the installation

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 22 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Before we start

Make sure swak4Foam is installed

Call the most popular utility of swak4Foam
swakVersion reported below the usual header

Provoking an error

> funkySetFields
/*---*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1612+ |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
---/
Build : v1612+-25 c3270ac2a3
Exec : funkySetFields
Date : Jul 09 2017
Time : 21:03:21
Host : "bgs -cool -greybook"
PID : 59774
Case : /Volumes/Foam/LatexDocs/Vortraege/Exceter2017/Exceter2017SwakPyFoam/Vortrag
nProcs : 1
sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).
fileModificationChecking : Monitoring run -time modified files using timeStampMaster (fileModificationSkew 10)
allowSystemOperations : Allowing user -supplied system call operations

// * //
swakVersion: 0.4.1 (Release date: 2017 -05 -31)
// * //

--> FOAM FATAL ERROR:
funkySetFields: time/latestTime option is required

From function main()
in file funkySetFields.C at line 759.

FOAM exiting

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 23 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 24 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 25 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Getting the base case

pyFoamCloneCase.py only copies the parts of a case that are
necessary to start it

system, constant, 0
We move 0 to 0.org to avoid overwriting it
PyFoamHistory records what is done to the case with PyFoam

Handy for "What command did I use 3 weeks ago to prepare this?"
We don’t need the Allrun / Allclean scripts
PyFoam creates a .foam-file so that we can open the case in
ParaView

Using our first PyFoam utility

> pyFoamCloneCase.py $FOAM_TUTORIALS/heatTransfer/buoyantPimpleFoam/hotRoom 01 baseCase
PyFoam WARNING on line 117 of file /Users/bgschaid/private_python/PyFoam/Applications/<brk>

<cont> CloneCase.py : Directory does not exist. Creating
> cd 01 baseCase
> ls
0 Allclean PyFoamHistory system
01 baseCase.foam Allrun constant
> rm All*
> mv 0 0.org
> cat PyFoamHistory
Fri Jul 14 00:14:40 2017 by bgschaid in bgs -cool -greybook :Application: pyFoamCloneCase.py <brk>

<cont> /Users/bgschaid/OpenFOAM/OpenFOAM -4.1/ tutorials/heatTransfer/buoyantPimpleFoam/<brk>
<cont> hotRoom 01 baseCase | with cwd /path/to/the/case | Cloned to 01 baseCase

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 26 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Preparing

pyFoamPrepareCase.py is a utility to set up cases in a reproducible way

First setup

> pyFoamPrepareCase.py .
Looking for template values .

Used values

Name - Value
--

caseName - "01 baseCase"
casePath - "/path/to/the/case /01 baseCase"
foamFork - openfoam

foamVersion - 4.1
numberOfProcessors - 1

No script ./ derivedParameters.py for derived values
Clearing .
PyFoam WARNING on line 642 of file /Users/bgschaid/private_python/PyFoam/RunDictionary/<brk>

<cont> SolutionDirectory.py : The first timestep in /path/to/the/case /01 baseCase is <brk>
<cont> None not a number. Doing nothing

Writing parameters to ./ PyFoamPrepareCaseParameters
Writing report to ./ PyFoamPrepareCaseParameters.rst
Found 0.org. Clearing 0
No 0-directory
...

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 27 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

What pyFoamPrepareCase.py does

It does more. But in our case it
1 Removes old timesteps
2 Copies 0.org to 0
3 runs blockMesh

because it found a blockMeshDict

4 runs setFields

There is a full presentation about this utility
Does a lot more:

Create files from templates
Executes scripts to set up the case
. . .

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 28 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Running

This is the most-used utility in PyFoam

Starting the simulation

> pyFoamPlotRunner.py --clear --progress --auto --hardcopy --prefix=firstRun auto
Clearing out old timesteps
Warning in /Users/bgschaid/Development/OpenFOAM/Python/PyFoam/bin/pyFoamPlotRunner.py : <brk>

<cont> Replacing solver ’auto ’ with buoyantPimpleFoam in arguments
t = 232

Some time later
t = 2000
> ls
0 PyFoamPrepareCaseParameters
0.org PyFoamPrepareCaseParameters.rst
01 baseCase.foam PyFoamRunner.buoyantPimpleFoam.analyzed
1000 PyFoamRunner.buoyantPimpleFoam.logfile
1200 PyFoamServer.info
1400 PyFoamState.CurrentTime
1600 PyFoamState.LastOutputSeen
1800 PyFoamState.LogDir
200 PyFoamState.StartedAt
2000 PyFoamState.TheState
400 constant
600 firstRun.cont.png
800 firstRun.linear.png
Gnuplotting.analyzed hotRoomMoving.foam
PyFoam.blockMesh.logfile PyFoam.setFields.logfile
system PyFoamHistory

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 29 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

What pyFoamPlotRunner.py does

Executes a solver
Captures the output

Writes it to a logfile
Starts with PyFoamRunner and ends with logfile

Analyzes it and plots the results

The options we used are
–clear Remove old simulation results

–progress Swallow the output and only print the time
–auto if we find processor*-directories run the case in

parallel. If not: run single processor
–hardcopy , –prefix In the end create pictures of the plots. Start

their names with firstRun

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 30 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Residuals plot

Figure: Automatic plot of the initial residuals

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 31 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Continuity plot

Figure: Automatic plot of the continuity

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 32 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Watching

The utility pyFoamPlotWatcher.py takes a file and interprets it as
the output of an OpenFOAM-run

Assumes that the file is not "finished" and updates the plots when
lines are added

Options are similar to the PlotRunner
--with-all adds some more plots

Replaying the plots

> pyFoamPlotWatcher.py --with -all --hardcopy --prefix=firstRunWatch PyFoamRunner.<brk>
<cont> buoyantPimpleFoam.logfile

<snip>
diagonal: Solving for rho , Initial residual = 0, Final residual = 0, No Iterations 0
time step continuity errors : sum local = 1.32491e-09, global = -1.69522e-11, cumulative = <brk>

<cont> 0.00179062
DILUPBiCG: Solving for epsilon , Initial residual = 0.000109711 , Final residual = 1.21588e<brk>

<cont> -07, No Iterations 1
DILUPBiCG: Solving for k, Initial residual = 0.00022317 , Final residual = 4.67542e-07, No <brk>

<cont> Iterations 1
ExecutionTime = 31.74 s ClockTime = 55 s

End
^C
Watcher: Keyboard interrupt
> ls *.png
firstRun.cont.png firstRunWatch.courant.png firstRunWatch.linear.png
firstRun.linear.png firstRunWatch.execution.png
firstRunWatch.cont.png firstRunWatch.iter.png

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 33 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Number of iterations

Figure: Automatic plot of iterations of the linear solver

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 34 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Execution time

Figure: The time each timestep takes (jumps because of resolution of the
output)

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 35 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Starting a case

Courant number

Figure: Courant numbers calculated by OpenFOAM

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 36 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 37 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

State files in ParaView

Great time-saving feature of ParaView
Which now (== the last few years) works quite stable

The way to work with it
1 Do a complicated visualization
2 Save it with Save State
3 Close Paraview
4 Copy state-file to another case
5 Open Paraview
6 Press Load state and select state-file
7 Paraview is confused and asks for the case
8 Do the same visualization with another case

Saves a lot of time
But it can be even easier

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 38 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Example of Paraview state

Create a visualization that you like
Important : A Text source with the content %(casename)s

Figure: How Paraview looks before we save the state

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 39 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

pyFoamPVSnapshot.py

Utility in pyFoam that needs three informations
1 A state-file
2 The case
3 One or more times

In return it does:
1 Create a copy of the state-file
2 Manipulate it to point to the case
3 Load into a GUI-less version of Paraview (pvpython)
4 Write pictures

Can do a few other things
This allows quickly creating reference pictures for similar cases

Which look exactly the same

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 40 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

No Paraview

Now we can create pictures without using the mouse
--state is the state-file we created
--time and --latest specify which times to snapshot
The . says "this directory/case"

Creating the pictures

> pyFoamPVSnapshot.py . --state=hotWithStreamlines.pvsm --time =200 --latest
Executing PVSnapshot with pvpython trough a proxy -script options:
Warning in /var/folders/h7/3 nw065_955d1zm30_bjn384h0000gr/T/pyFoamPVSnapshot_du5hxr1z.py : <brk>

<cont> Setting decomposed type to auto : Decomposed/Reconstruced correctly set. Nothing<brk>
<cont> changed

PyFoam WARNING on line 110 of file /Users/bgschaid/private_python/PyFoam/Paraview/<brk>
<cont> ServermanagerWrapper.py : Can ’t find expected plugin ’libPOpenFOAMReaderPlugin ’ <brk>
<cont> assuming that correct reader is compiled in. Wish me luck Warning in /var/<brk>
<cont> folders/h7/3 nw065_955d1zm30_bjn384h0000gr/T/pyFoamPVSnapshot_du5hxr1z.py : <brk>
<cont> Trying offscreen rendering. If writing the file fails with a segmentation fault <brk>
<cont> try --no -offscreen -rendering

Snapshot 1 for t= 200 View 0 png
Snapshot 10 for t= 2000 View 0 png
Warning in /var/folders/h7/3 nw065_955d1zm30_bjn384h0000gr/T/pyFoamPVSnapshot_du5hxr1z.py : <brk>

<cont> Removing pseudo -data -file /path/to/the/case /01 baseCase /01 baseCase.OpenFOAM
> ls Snap*
Snapshot_01baseCase_00001_t =200 _hotWithStreamlines.png
Snapshot_01baseCase_00010_t =2000 _hotWithStreamlines.png

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 41 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Simulation at start

Note: %(casename)s has been replaced with the name of the case

Figure: First written time-step

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 42 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Almost steady state

Figure: Flow has developed

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 43 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Give me the numbers

Sometimes one opens Paraview just to see the ranges of the
variables

The numbers the post-processor shows are not necessarily the
numbers OpenFOAM uses

There is a utility to quickly check that

Getting numbers

> fieldReport -time 2000 T
<snip>
Time = 2000

Reading Field T of type volScalarField

Internal field:
swak4Foam: Allocating new repository for sampledMeshes
swak4Foam: Allocating new repository for sampledGlobalVariables
Size | Weight Sum 4000 | 500
Range (min -max) 300.458 | 300.941
Average | weighted 300.532 | 300.532
Sum | weighted 1.20213e+06 | 150266
Median | weighted 300.535 | 300.535

End

Not all the numbers make sense for all fields
Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 44 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Numbers from fieldReport

"Weight" is the cells volumes
Size Number of cells

Weight Sum Total volume of the case
Range The range

Average average of all cells (each cell has weight 1)
weighted average weighted by the cell volume

Sum Value in all cells added (usually makes no sense)
weighted basically the integral (only makes sense for

extensive values)
Median The value for which 50% of the cells have a smaller value

(more stable than Average)
This is used quite often in swak4Foam
Generalization is quantile: quantile0.5 is the
same as median
fieldReport can report these too: see -help

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 45 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

More numbers

Utility can report patches separately
Write to csv-files to be analyzed elsewhere

entity allows separating the data

Drowning in data

> fieldReport -time 0: -doBoundary -csvName numbers T
<snip>

Patch field: fixedWalls
Size | Weight Sum 800 | 200
Range (min -max) 300.462 | 300.55
Average | weighted 300.529 | 300.529
Sum | weighted 240424 | 60105.9
Median | weighted 300.534 | 300.534

End
> ls *csv
numbers_T_region0.csv
> cat numbers_T_region0.csv
time ,entity ,size ,weight_sum ,minimum ,maximum ,average ,average_weighted ,sum ,sum_weighted ,<brk>

<cont> median ,median_weighted
0,internalField ,4000 ,500 ,300 ,300 ,300 ,300 ,1.2e+06 ,150000 ,300 ,300
0,patch floor ,400 ,100 ,300 ,600 ,303 ,303 ,121200 ,30300 ,300.505 ,300.505
0,patch ceiling ,400 ,100 ,300 ,300 ,300 ,300 ,120000 ,30000 ,300 ,300
0,patch fixedWalls ,800 ,200 ,300 ,300 ,300 ,300 ,240000 ,60000 ,300 ,300
200, internalField ,4000 ,500 ,300.405 ,302.24 ,300.511 ,300.511 ,1.20204e<brk>

<cont> +06 ,150255 ,300.499 ,300.499
200, patch floor ,400 ,100 ,300 ,600 ,303 ,303 ,121200 ,30300 ,300.505 ,300.505
200, patch ceiling ,400 ,100 ,300 ,300 ,300 ,300 ,120000 ,30000 ,300 ,300

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 46 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Throwing all away

pyFoamClearCase.py does the same thing as the --clear-option
of the Runner

Throws non-essential stuff away
--keep-last means "and keep the final result"

> pyFoamClearCase.py --verbose -clear --keep -last .
Clearing /path/to/the/case /01 baseCase /200
Clearing /path/to/the/case /01 baseCase /400
<snip>
Clearing /path/to/the/case /01 baseCase /1600
Clearing /path/to/the/case /01 baseCase /1800
Clearing /path/to/the/case /01 baseCase/PyFoam.blockMesh.logfile
Clearing /path/to/the/case /01 baseCase/PyFoam.setFields.logfile
Clearing /path/to/the/case /01 baseCase/PyFoamPrepareCaseParameters

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 47 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Preparing results

Packing the case with pyFoamPackCase.py

Similar to pyFoamCloneCase.py
Knows "what is important"
But instead creates an archive file

The state until here has been packed with
The state file is added

pyFoamPackCase.py 01baseCase --add=hotWithStreamlines.pvsm

Can be downloaded (during the workshop) with

curl http://openfoamwiki.net/staticPages/OFW12/01baseCase.tgz -o 01base.tgz

or

wget http://openfoamwiki.net/staticPages/OFW12/01baseCase.tgz

if things happened too fast to follow

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 48 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 49 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 50 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

funkySetFields

This utility is the oldest part of swak4Foam
Existed looong before swak4Foam

The idea is "specify an expression and the utility creates a field with
that value"

Or modify an existing field

Most important options are
-time and -latestTime Which times to use

-field Name of the field to write
-create (optional) Create a new field

-expression The expression that should be evaluated
-condition (optional) only modify cells where this logical

expression is true

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 51 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

For our non-metric friends

It is hard enough to think "Is 300 K warm for a room?" if you’re used to
Celsius. But if you’re used to Fahrenheit

Calculating the room temperature

> funkySetFields -time 0: -create -field TFahrenheit -expression "T*(9/5) -459.67"
<snip>
Time = 2000
Using command -line options

Creating field TFahrenheit

Putting "T*(9/5) -459.67" into field TFahrenheit at t = "2000" if condition "true" is true

Setting 4000 of 4000 cells
Writing to "TFahrenheit"

End
> fieldReport -time 0: TFahrenheit
<snip>
Time = 2000

Reading Field TFahrenheit of type volScalarField

Internal field:
Size | Weight Sum 4000 | 500
Range (min -max) 81.1544 | 82.0238
Average | weighted 81.2876 | 81.2876
Sum | weighted 325150 | 40643.8
Median | weighted 81.2919 | 81.2919

End

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 52 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Old way of setting the boundaries

This is how the original case set the boundary value

setFieldsDict
defaultFieldValues
(

volScalarFieldValue T 300
);

regions
(

// Set patch values (using ==)
boxToFace
{

box (4.5 -1000 4.5) (5.5 1e-5 5.5);

fieldValues
(

volScalarFieldValue T 600
);

}
);

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 53 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Doing it our own way

1 Remove the old file

rm system/setFieldsDict

1 Setting up the case

pyFoamPrepareCase.py .

1 Run funkySetFields:

Shell
> funkySetFields -time 0 -keepPatches -valuePatches "floor" -field T -expression "600" -<brk>

<cont> condition "(pos().x>4.5 && pos().x<5.5 && pos().z>4.5 && pos().z <5.5)"
<snip>
Time = 0
Using command -line options

Modifying field T of type volScalarField

Putting "600" into field T at t = "0" if condition "(pos().x>4.5 && pos().x<5.5 && pos().z<brk>
<cont> >4.5 && pos().z<5.5)" is true

Keeping patches unaltered

Setting 40 of 4000 cells
Writing to "T"

End

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 54 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Explanation

If you never programmed C/C++/Java:
&& means "logical and"

pos() is the position of the cell center
.x is the x-component

-keepPatches means "keep that patches that we found in the
original file"

Note: we didn’t use -create

-valuePatches is a list with patches were the value from the cells
near to the patch are used for the patch faces

Otherwise zeroGradient is default for patches

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 55 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Expression syntax

The syntax of swak4Foam expressions is based on the syntax
OpenFOAM uses in its programs

Which in turn is C++
The usual operator precedence (multiplication before addition etc)
applies

"Special" operators like & for the inner product and ^ are the same

There is a number of builtin-functions based on the regular
OpenFOAM-functionality

This includes differential operators like div or snGrad
But only the explicit variation

Expressions give the same results in parallel
No need to change anything on the user side
This includes min, max and average

Not all functions will be explained here
For a complete list look at the Incomplete reference guide

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 56 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Column of fire

Figure: Initial condition as seen in Paraview

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 57 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Clearing it

We don’t want the "column of fire" as an initial condition
But the patches should be left intact
because of valuePatches the floor has the desired values

Removing the inner values

> funkySetFields -time 0 -keepPatches -field T -expression "300"
<snip>
Time = 0
Using command -line options

Modifying field T of type volScalarField

Putting "300" into field T at t = "0" if condition "true" is true
Keeping patches unaltered

Setting 4000 of 4000 cells
Writing to "T"

End
> pyFoamPlotRunner.py --clear --progress auto

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 58 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing funkySetFields

Calling funkySetFields automatically

Calling this funkySetFields by hand every time we change the
mesh is tedious
pyFoamPrepareCase.py can do this for us

A script caseSetup.sh is called after the mesh creation

Copy the commands from the terminal to the script:

caseSetup.sh

#! /bin/sh
funkySetFields -time 0 -keepPatches -valuePatches "floor" -field T -expression "600" -<brk>

<cont> condition "(pos().x>4.5␣&&␣pos().x<5.5␣&&␣pos().z>4.5␣&&␣pos().z<5.5)"
funkySetFields -time 0 -keepPatches -field T -expression "300"

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 59 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 60 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Adding function objects

function objects are small programs that are executed at the end of
every time-step

OpenFOAM has a lot of them
Most of the functionality in swak4Foam is in function objects

They have to be loaded at run-time
By adding the library in to the libs list in controlDict

Function objects are added to the functions-dictionary in
controlDict

Need a unique name
Only required parameter is the type

Everything else depends on the type

system/controlDict

libs (
"libsimpleSwakFunctionObjects.so"

);

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 61 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Evaluating the temperature

At first we want to get the statistics of the temperature at every
time-step

system/controlDict

functions {
temperatures {

type swakExpression;
valueType internalField;
verbose true;
expression "T";
accumulations (

min
weightedQuantile0 .1
weightedAverage
weightedQuantile0 .9
max

);
}

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 62 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

swakExpression

One of the most general function objects in swak4Foam
Evaluates an expression on a part of the mesh (cell zone, patch,
. . .)
Which part is specified by valueType

internalMesh means "in the cells"
verbose means "write to the console"

Otherwise only a file in postProcessing is written
accumulations is a list of . . . accumulations

Accumulation here means "a method to take many numbers and
condense them into one number"
A list of all the accumulations can be found in the Incomplete
Reference Guide that comes with the swak-sources

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 63 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Running with Evaluation

How the output looks like will be important in the next step
Copy the line with the temperature to later past it into the text
editor

This avoids typos

Example output

> pyFoamRunner.py --clear auto
<snip>
DILUPBiCG: Solving for k, Initial residual = 0.055352 , Final residual = 1.78789e-09, No <brk>

<cont> Iterations 5
ExecutionTime = 1.7 s ClockTime = 4 s

Expression temperatures : min =300.375 weightedQuantile0 .1=300.425 weightedAverage =300.487 <brk>
<cont> weightedQuantile0 .9=300.526 max =302.99

Courant Number mean: 0.314849 max: 1.40162
Time = 86

diagonal: Solving for rho , Initial residual = 0, Final residual = 0, No Iterations 0
PIMPLE: iteration 1
<snip>
> ls postProcessing/swakExpression_temperatures /0
temperatures

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 64 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Getting PyFoam to recognize what swak4foam calculated

We’d like to have plots of the temperature
The way this works is

1 swak4foam writes the numbers to the console
2 PyFoam grabs that output
3 Analyzes it
4 If it finds things it recognizes it collects them
5 And plots them

We’ve got to tell PyFoam about the stuff it should recognize
For this we give it a customRegexp-file

In that file we need regular expressions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 65 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Regular expressions

Regular expressions are very popular for analyzing textual data (pattern
matching)

For instance in OpenFOAM for flexible boundary conditions
Python comes with a library for analyzing them
There are slightly different dialects

For instance there are slight differences between the regular expressions of
Python and OpenFOAM
But in 90% of all cases they behave the same

The following slide gives a quick glance
Usually you won’t need much more for PyFoam

There is a number of cool "regular expression tester" (enter that in
Google) applications on the web

One example: http://regex101.com

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 66 / 144

http://regex101.com

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Regular expressions in 3 minutes

1 Most characters match only themself
For instance ’ab’ matches only the string "ab"

2 The dot (’.’) matches any character except a newline
Pattern ’a..a’ matches (among others) "abba", "aBBa", "ax!a"

3 The plus ’+’ matches the character/pattern before it 1 or more times
’a.+a’ matches "aba", "abbbba" but not "aa"

4 ’*’ is like ’+’ but allows no match too
’a.*a’ matches "aba", "abbbba" and also "aa"

5 Parenthesis ’()’ group characters together. Patterns are numbered. They
receive the number by the opening ’(’

’a((b+)a)’ would match "abba" with group 1 being "bba" and group 2 "bb"
6 To match a special character like ’+-().|’ prefix it with a ’\’

To match "(aa)" you’ve got to write ’\(aa\)’
Other special characters that occur frequently in OpenFOAM-output are
’[]\{\}’

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 67 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

The customRegexp-file

If a file customRegexp is found in the case by a Plot-utility it is read
It is in OpenFOAM-format:

a dictionary
all entries are dictionaries too

The name of the entry is used to identify the data (for instance during
writing)
Most frequent entry in the dictionaries are:

expr This is required. A regular expression that a line must match.
All groups (enclosed by ’()’) are interpreted as data and
plotted

theTitle String with the title of the plot
titles List of words/strings. The names that the data items will get

in the legend
customRegexp is important enough for PyFoam to be automatically cloned
by pyFoamCloneCase.py

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 68 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

PyFoam reads the temperature

Paste the line you copied before into the customRegexp-file
Build the rest around it

If there are special characters in the output put a backslash before it
Replace the numbers you want with (.+). If you don’t need them
replace with .+ (no ())

Because just one forgotten (or extra) space will make the expression
not match the output

customRegexp

// -*- c++ -*-

temperature {
theTitle "Temperature";
ylabel "T[K]";
expr "Expression␣temperatures␣:␣␣min =(.+)␣weightedQuantile0 .1=(.+)␣weightedAverage =(.+)<brk>

<cont> ␣weightedQuantile0 .9=(.+)␣max =(.+)";
titles (

min
"10␣%"
average
"90␣%"
max

);
}

Remark: First line is only for Emacs-users

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 69 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

The temperature plot

Figure: T by pyFoamPlotRunner

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 70 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Adding patch temperatures

Now we want to know the temperatures on the patches
patchExpression is a specialized version of swakExpression

Doesn’t need valueType
But a list patches with the patch names

The function internalField doesn’t use the patch-face values but
the next cells

Much better in this case

In functions in system/controlDict

wallTemperatures {
$temperatures;
type patchExpression;
patches (

floor
ceiling
fixedWalls

);
}
wallTemperaturesInternal {

$wallTemperatures;
expression "internalField(T)";

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 71 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Patch output

More output

ExecutionTime = 2.54 s ClockTime = 5 s

Expression temperatures : min =300.404 weightedQuantile0 .1=300.446 weightedAverage =300.499 <brk>
<cont> weightedQuantile0 .9=300.574 max =302.878

Expression wallTemperatures on fixedWalls: min =300.404 weightedQuantile0 .1=300.436 <brk>
<cont> weightedAverage =300.46 weightedQuantile0 .9=300.485 max =300.499

Expression wallTemperatures on floor: min =300 weightedQuantile0 .1=300.101 weightedAverage<brk>
<cont> =303 weightedQuantile0 .9=300.909 max =600

Expression wallTemperatures on ceiling: min =300 weightedQuantile0 .1=300 weightedAverage<brk>
<cont> =300 weightedQuantile0 .9=300 max =300

Expression wallTemperaturesInternal on fixedWalls: min =300.404 weightedQuantile0 .1=300.436<brk>
<cont> weightedAverage =300.46 weightedQuantile0 .9=300.485 max =300.499

Expression wallTemperaturesInternal on floor: min =300.424 weightedQuantile0 .1=300.445 <brk>
<cont> weightedAverage =300.492 weightedQuantile0 .9=300.505 max =302.878

Expression wallTemperaturesInternal on ceiling: min =300.404 weightedQuantile0 .1=300.422 <brk>
<cont> weightedAverage =300.516 weightedQuantile0 .9=300.719 max =300.901

Courant Number mean: 0.231081 max: 1.171
Time = 128

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 72 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

All walls in one plot

Here we use a dynamic plot
"Dynamically generate data sets from a name"

Name is taken from the idNr th regular expression group

customRegexp

wallInternalTemperatures {
theTitle "Temperature␣near␣the␣wall";
type dynamic;
idNr 1;
expr "Expression␣wallTemperaturesInternal␣on␣(.+):␣␣min =(.+)␣weightedQuantile0 .1=(.+)␣<brk>

<cont> weightedAverage =(.+)␣weightedQuantile0 .9=(.+)␣max =(.+)";
titles (

min
"10%"
average
"90%"
max

);
}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 73 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

First function objects

Plotting the wall temperatures

Figure: The temperatures near the wall

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 74 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 75 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

Fahrenheit while we go

The exypressionField function object is like "funkySetFields
during the calculation"

But it is in another library

Additional line in controlDict
libs (

"libsimpleSwakFunctionObjects.so"
"libswakFunctionObjects.so"

);

autowrite Write at output times

functions in controlDict
addFahrenheit {

type expressionField;
autowrite true;
expression "T*(9/5) -459.67";
fieldName TFahrenheit;

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 76 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

Running and checking

Checking if that field was created

> pyFoamRunner.py --clear --auto --progress
t = 2000
> ls 2000
T.gz U.gz epsilon.gz nut.gz p_rgh.gz swak4Foam
TFahrenheit.gz alphat.gz k.gz p.gz phi.gz uniform
> fieldReport -latestTime TFahrenheit
<snip >
Time = 2000

Reading Field TFahrenheit of type volScalarField

Internal field:
swak4Foam: Allocating new repository for sampledMeshes
swak4Foam: Allocating new repository for sampledGlobalVariables
Size | Weight Sum 4000 | 500
Range (min -max) 81.1543 | 82.024
Average | weighted 81.2876 | 81.2876
Sum | weighted 325151 | 40643.8
Median | weighted 81.292 | 81.292

End

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 77 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

Dictionary mode of funkySetFields

Until now we used FSF in command-line mode
Everything is specified on the command line

In dictionary-mode only the time is specified on the command line
Everything else in a dictionary
A list of expressions
Each expression is a named dictionary

Dictionary entries correspond to command line options
And there are more

Advantages of dictionary mode:
More than one evaluation possible
More flexibility

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 78 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

The variables-list

Almost everywhere where we have a expression we can specify
such a list
Format:

Variable name
=
Expression
;

The expression is evaluated and stored
Purpose: make expressions more readable by breaking them into part
variables are evaluated every time the expression is evaluated

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 79 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

Normalizing by the length

Here we make the velocity "dimesionless" by dividing it with the
biggest length of the geometry

For calculating that length we use point locations pts() (not the cell
locations)

max is used in two ways here:
maximum of a field (gives one homogeneous field)
maximum of two values (may give a different value in every cell)

system/funkySetFields.nodimVel

expressions (
velWithoutDimensions {

field UDimless;
create true;
expression "U/LMax";
variables (

"xLen=max(pts().x)-min(pts().x);"
"yLen=max(pts().y)-min(pts().y);"
"zLen=max(pts().z)-min(pts().z);"
"LMaxP=max(xLen ,max(yLen ,zLen));"
"LMax=interpolateToCell(LMaxP);"

);
dimensions [0 0 -1 0 0 0 0];

}
);

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 80 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

Native versus secondary structure

For the internalField the value in the cells is the native value
The values at the points is a secondary value
swak4Foam does not automatically interpolate between them

For that functions like interpolateToCell have to be used
Constants like 1 are always native values

For a list of native/secondary structures see the Incomplete
Reference guide that comes with the sources

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 81 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

Just checking

What value should this give in the whole field? (theoretically)

> funkySetFields -time 0: -dictExt dimlessVel
<snip>
Time = 0
Using funkySetFieldsDict

Part: velWithoutDimensions
Creating field UDimless

Putting "U/LMax" into field UDimless at t = "0" if condition "true" is true

swak4Foam: Allocating new repository for sampledMeshes
swak4Foam: Allocating new repository for sampledGlobalVariables
Setting 4000 of 4000 cells
Writing to "UDimless"

<snip>
> funkySetFields -time 2000 -expression "mag(U)/(1e-10+ mag(UDimless))" -field relU -create
> fieldReport -time 2000 relU

Note: the 1e− 10 is there to avoid "divison by zero" errors

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 82 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Creating a full field

This case

All we’ve done so far can be download from

http://openfoamwiki.net/staticPages/OFW12/02staticSetup.tgz

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 83 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 84 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 85 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Prepare

Now instead of the static boundary condition we want a dynamic
one

That’s why we’re removing caseSetup.sh

The pyFoamListCases.py-utility is like a "ls for
OpenFOAM-cases"

Checking our cases

> cd ..
> pyFoamCloneCase.py 02 staticSetup 03 simpleGroovyBC
> pyFoamListCases.py .
steps: 100%|***| 3/3 [00:00 <00:00 , 10.99 entries/s]

mtime | hostname | first - last (nrSteps) nowTime s state | <brk>
<cont> solver | name

---<brk>
<cont>

Fri Jul 14 16:44:54 2017 | bgs -cool -greybook | 0 - 2000 (2) 2000.0 s Finished | <brk>
<cont> None | ./01 baseCase

Sun Jul 16 09:27:39 2017 | bgs -cool -greybook | 0 - 2000 (11) 2000.0 s Finished | <brk>
<cont> buoyantPimpleFoam | ./02 staticSetup

Sun Jul 16 13:26:16 2017 | <no file> | None - None (0) None s | <brk>
<cont> none found | ./03 simpleGroovyBC

> cd 03 simpleGroovyBC
> rm caseSetup.sh

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 86 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Adding another library

We add the library for the dynamic boundary condition
Also set the simulation time to a full hour

system/controlDict

libs (
"libsimpleSwakFunctionObjects.so"
"libswakFunctionObjects.so"
"libgroovyBC.so"

);

and also
endTime 3600;

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 87 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

groovyBC

This is the second oldest part of swak4Faom
The "fusion" of this and FSF became swak4Faom

It is basically a mixed boundary condition where everything can be
evaluated
valueExpression an expression describing the value
gradientExpression the gradient (this is optional)
fractionExpression whether the value is used (1) or the gradient (0).

If unset a constant 1 is assumed
Today we’ll only use valueExpression

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 88 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Setting a round heater

Here we specify a moving heater
Heater is a circle with diameter: 1.5 m
The center moves on a circle with a radius of 1.5 m
Needs an hour to move around

0.org/T

floor
{

type groovyBC;
value uniform 300;
variables (

"center=vector (5,0,5);"
"radiusFire =0.75;"
"radiusCircle =1.5;"
"radiant =2*pi*time() /3600;"
"middle=center+radiusCircle*vector(sin(radiant) ,0,cos(radiant));"
"tHigh =600;"
"tLow =300;"

);
valueExpression "mag(pos()-middle)<radiusFire␣?␣tHigh␣:␣tLow";

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 89 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

The conditional operator

The ? : operator is known to those who ever programmed a
language with a C-like syntax
This is basically a "1-line if"
An expression

a ? b : c

means "if a is true use b. Otherwise use c"
In swak different cells/faces can use either b or c
because a is not necessarily homogeneous

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 90 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

replayTransientBC

Writing groovyBC is a bit like programming
Sometimes mistakes happen

Not good if this happens at the end of a long run

To test such boundary conditions there is replacTransientBC
Loads specified boundary conditions
Increments the time-step without solving anything

Updates the boundary conditions

Writes the field at the regular intervalls

This allows checking whether the boundary condition works as
expected

In a fraction of the time of the real solution
Works for non-swak4Foam boundary conditions as well

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 91 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Preparing and running

From now on we don’t mention the two steps:
1 pyFoamPrepareCase.py

optionally with --no-mesh if mesh creation is unnecessary

2 pyFoamRunner.py

We do this and get different plots
And also different snapshots

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 92 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Bigger area means higher temperature

Figure: Temperature curves with the round/moving heater

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 93 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Different wall temperatures

Figure: Wall temperatures change as well

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 94 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Moving heater starting

Figure: The moving heater in the beginning

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 95 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Introducing groovyBC

Moving heater evolving

Figure: The moving heater moved on

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 96 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 97 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Pro-tip: which fields are available?

Function objects can only work with fields that are in memory
To get a list of those swak4Foam has a function object

functions in system/controlDict

whatIsThere {
type listRegisteredObjects;

}

Output

Content of object registry region0
Name Type Autowrite

======================== ============================= =========
K IOobject No

K_0 IOobject No
MRFProperties IOobject No

T volScalarField Yes
<snip>

thermo:alpha IOobject No
thermo:mu IOobject No

thermo:psi IOobject No
thermo:rho IOobject No

thermophysicalProperties dictionary No
turbulenceProperties dictionary No

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 98 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Pro-tip: The Banana trick

If we don’t know which function objects are there: we use the banana
trick
functions in system/controlDict

gettingFunctionObjects {
type banana;

}

Output

--> FOAM FATAL ERROR:
Unknown function type banana

Valid functions are :

90
(
abort
addForeignMeshes
addGlobalVariable
calculateGlobalVariables
clearExpressionField
coded
correctThermo
createSampledSet
createSampledSurface
dumpSwakExpression
....

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 99 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

New file for the heat flux

We create a new file whose only purpose is the boundary condition
Calculates the heat flux on the wall

0.org/heatFlux

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField
{

".*"
{

type groovyBC;
value uniform 0;
valueExpression "kappa*snGrad(T)";
variables (

"cpGas =1000;" // from thermoPhysicalProperties
"kappa=cpGas*alphat;"

);
aliases {

alpha thermo:alpha;
}

}
}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 100 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

The aliases

Some field names are incompatible with swak4Foam-expressions
Because of characters that are used for operators
Here it is the : in thermo:alpha

In such cases specify a aliases-dictionary
the key is a "valid" name
the value is what you really want

swak4Foam will use the "real" field when you specify the "alias" field

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 101 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Calculate the flux

This function object
loads the specified fields at startup
updates the boundary conditions at every time-step
writes the fields at write-times

controlDict
calculateCurrentFlux {

type readAndUpdateFields;
fields (

heatFlux
);

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 102 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Calculating fluxes

Checking the fluxes (weighted sums)

> pyFoamPrepareCase.py . --no-mesh
...
> pyFoamRunner.py --clear --progress --auto auto
...
> fieldReport -latestTime heatFlux -latestTime -noDoField -doBoundary
<snip>
Time = 3600

Reading Field heatFlux of type volScalarField

Patch field: floor
Size | Weight Sum 400 | 100
Range (min -max) -0.242591 | 28.2346
Average | weighted 0.12034 | 0.12034
Sum | weighted 48.1362 | 12.034
Median | weighted -0.132456 | -0.132456

Patch field: ceiling
Size | Weight Sum 400 | 100
Range (min -max) -0.916542 | -0.255066
Average | weighted -0.50377 | -0.50377
Sum | weighted -201.508 | -50.377
Median | weighted -0.492 | -0.492

Patch field: fixedWalls
Size | Weight Sum 800 | 200
Range (min -max) 0 | 0
Average | weighted 0 | 0
Sum | weighted 0 | 0
Median | weighted 5e-16 | 5e-16

End
Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 103 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Evaluating the heat fluxes

get the fluxes on the walls
integrate is basically "weighted sum"

Check whether "what goes in must go out"

system/controlDict

heatFluxes {
$wallTemperatures;
expression "heatFlux";
accumulations (

integrate
);

}
totalHeatFlux {

type swakExpression;
valueType patch;
patchName ceiling;
verbose true;
accumulations (

average
);
expression "sum(area()*heatFlux)+heatFluxFloor";
variables (

"heatFluxFloor{floor }=sum(area()*heatFlux);"
);

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 104 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Remote variables

If there is a {} between the variable name and the = then it is a
remote variable

"Don’t evaluate the expression here. Evaluate it elsewhere"
But store the value here

If there is only a name between the {} it is a patch
In our case the floor

Remote variables must be a single value (homogeneous)
Otherwise we’d have interpolation problems

For details see General variable specification in the Incomplete
reference guide

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 105 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

Plotting the heat-flux data

a slave plot doesn’t have its own plot window but plots into the
window of the master
alternateAxis specifies values that are on a different scale (on the
right of the plot window)

customRegexp

heatFluxWall {
theTitle "Heat␣flux";
type dynamic;
expr "Expression␣heatFluxes␣on␣(.+):␣␣integrate =(.+)";
idNr 1;
titles (

sum
);
alternateAxis (

total
);

}
totalHeatFlux {

type slave;
master heatFluxWall;
expr "Expression␣totalHeatFlux␣:␣␣average =(.+)";
titles (

total
);

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 106 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

The heat fluxes

Figure: Heat fluxes over time

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 107 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

New state with heat fluxes

We use the Warp by Scalar-filter on floor and ceiling with the
heatFlux field

Figure: Heat flux at floor and ceiling

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 108 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

New state with heat fluxes . . . later

Figure: Heat flux at floor and ceiling in the end

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 109 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Evaluations on boundaries

This case

All we’ve done so far can be download from

http://openfoamwiki.net/staticPages/OFW12/03simpleGroovyBC.tgz

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 110 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 111 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Smoothing the floor temperature

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 112 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Smoothing the floor temperature

Discretization problems

Sometimes the swak-expressions are "correct"
But the results are not

Here we show an example that is due to the rather coarse cells
Faces on the floor switch from 300 to 600

No intermediate values

and a way to improve it

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 113 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Smoothing the floor temperature

Getting the wall temperature

To see the problem we add a plot of the patch values
But we don’t use the min and max values

Because the 600K would have "destroyed" the plot

customRegexp

wallTemperatures {
theTitle "Temperature␣on␣the␣wall";
type dynamic;
idNr 1;
expr "Expression␣wallTemperatures␣on␣(.+):␣␣min =.+␣weightedQuantile0 .1=(.+)␣<brk>

<cont> weightedAverage =(.+)␣weightedQuantile0 .9=(.+)␣max=.+";
titles (

"10%"
average
"90%"

);
}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 114 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Smoothing the floor temperature

Wall temperature plot

Figure: Jumps in the temperature on the wall

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 115 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Smoothing the floor temperature

Smoothing by interpolation

We calculate the same condition on the points
Interpolation with toFace gives betteer value for faces that are not
fully "inside"

Mixed with the old factor
Experimenting with the weighting could improve things further

0.org/T

floor
{

type groovyBC;
value uniform 300;
variables (

"center=vector (5,0,5);"
"radiusFire =0.75;"
"radiusCircle =1.5;"
"radiant =2*pi*time() /3600;"
"middle=center+radiusCircle*vector(sin(radiant) ,0,cos(radiant));"
"tHigh =600;"
"tLow =300;"
"factor=mag(pos()-middle)<radiusFire␣?␣1␣:␣0;"
"factorF=toFace(mag(pts()-toPoint(middle))<toPoint(radiusFire)␣?␣toPoint (1)␣:␣<brk>

<cont> toPoint (0));"
// "factor=factorF ;"
"factor =0.5*(factorF+factor);"

);
valueExpression "tHigh*factor+tLow*(1- factor)";

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 116 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Smoothing the floor temperature

Wall temperature plot smoothed

Figure: Jumps are much smaller (approximately a third)

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 117 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Backport of lumped condition

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 118 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Backport of lumped condition

Lumped boundary condition in OF+ v1612+

In the ESI-version the same case has a lumped boundary condition
on the ceiling

Basically: "Ceiling is 1 ton with cp 4100 and heated up by the room"

In the Foundation-release this boundary condition does not exist
Here we try to implement it with groovyBC

0.orig/T in tutorial case

ceiling
{

type lumpedMassWallTemperature;
kappaMethod fluidThermo;
kappa none;
mass 1000;
Cp 4100;
value uniform 300;

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 119 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Backport of lumped condition

Stored variables

Regular entries in variables forget their values between time-steps
When we specify them in the storedVariables-list they don’t

They are even saved and read on restart
So our lumped-condition is restartable

Specification of a stored variable needs two things
name

intialValue the value that should be used when the variable has
never been set before

When the variable is on the right of a = the stored value is used
The last value the variable is set to is stored for the next time-step
storedVariables are aware that there can be multiple iterations
per time-step

old values are from the last time. Not the last iteration

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 120 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Backport of lumped condition

Re-implementation with groovyBC

Calculating the total heat flux and updating the temperature of the
ceiling accordingly

0.org/T

ceiling
{

type groovyBC;
valueExpression "TLump";

variables (
"mass =1000;"
"cpSolid =4100;"
"cpGas =1000;" // from thermoPhysicalProperties
"kappa=cpGas*alphat;"
"Q=sum(area()*kappa*snGrad(T));"
"TLump=TLump -deltaT ()*Q/(mass*cpSolid);"

);
storedVariables (

{
name TLump;
initialValue "300";

}
);
aliases {

alpha thermo:alpha;
}
value uniform 300;

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 121 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Backport of lumped condition

Ceiling heats up (slightly)

Figure: Ceiling temperature on the bottom

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 122 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Backport of lumped condition

Heat fluxes

Figure: Heat fluxes differ slightly

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 123 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 124 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Low temperature outside our room

Instead of an adiabatic wall we want something more realistic
7Â°C outside. A cool day
Not perfectly isolated walls (ceofficient h)

But windows are usually less insulated than walls
One solution: create separate patches
What we do: variation of h

But first lets run the window-less case

0.org/T

fixedWalls
{

type externalWallHeatFluxTemperature;
value uniform 300;
Ta uniform 280;
h uniform 0.01;
kappaMethod fluidThermo;

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 125 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Room temperature doesn’t rise that much anymore

Figure: Room temperature almost constant

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 126 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Wall temperatures below room

Figure: On the fixedWall the temperature falls

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 127 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Heat flux were none was before

Figure: On the fixedWall there is now non-zero flux

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 128 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Directed flux for post-processing

system/controlDict

calculateCurrentFlux {
type readAndUpdateFields;
fields (

heatFlux
heatFluxDirected

);
}

0.org/heatFluxDirected

dimensions [0 0 0 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

".*"
{

type groovyBC;
value uniform (0 0 0);
valueExpression "normal ()*kappa*snGrad(T)";
variables (

"cpGas =1000;" // from thermoPhysicalProperties
"kappa=cpGas*alphat;"

);
aliases {

alpha thermo:alpha;
}

}
}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 129 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Heat flux with constant coefficient

New state with Warp by Vector-filter in Paraview

Figure: Surface outside wall: heat goes out

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 130 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Specifying the coefficient

funkySetBoundaryField is like funkySetFields
but for boundaries
can set other things that value

specify with target

The dictionary structure is quite similar

system/funkySetBoundaryFieldDict.setWall

transferCoeff {
field T;
expressions
(

{
target h;
patchName fixedWalls;
variables (

"minY =1;"
"maxY =2.5;"
"r=mag(vector(pos().x,0,pos().z)-vector (5,0,5));"
"thres=mag(vector (5 ,0 ,2.5));"

);
expression "(pos().y<maxY␣&&␣pos().y>minY␣&&␣r<thres)␣?␣0.1␣:␣0.01";

}
);

}

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 131 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Preparing

We re-add a preparation script
writeBoundarySubfields is utility to create separate fields from
boundary condition specifications

Here we say "Write h and Ta into fields so that we can post-process
them"
Nice to debug boundary conditions

caseSetup.sh

#! /bin/sh

funkySetBoundaryField -time 0 -dict funkySetBoundaryFieldDict.setWall
writeBoundarySubfields -time 0 -subfields "h:scalar ,Ta:scalar" T

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 132 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Heat transfer coefficient

Figure: Our expression seems to have worked: high heat transfer on "windows"

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 133 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Heat flux with lower coefficients

Figure: The "windows" have a big effect

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 134 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Windows are bad

Figure: The bad isolation makes the room temperature drop

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 135 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Windows are really bad

Figure: Wall temperatures drop even more

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 136 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

Total flux is wrong

Figure: What is the reason for this?

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 137 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Variable heat transfer

This case

All we’ve done so far can be download from

http://openfoamwiki.net/staticPages/OFW12/04moreGroovyBC.tgz

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 138 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Outline

1 Introduction
This presentation
Who is this?
What are we working with
Before we start

2 Simple setting up and running
Starting a case
Preparing results

3 Starting to work with expressions
Introducing funkySetFields

First function objects
Creating a full field

4 Boundary conditions
Introducing groovyBC
Evaluations on boundaries

5 Adding more features
Smoothing the floor temperature
Backport of lumped condition
Variable heat transfer

6 Conclusions

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 139 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

There is more

We’ve seen only parts of PyFoam and swak4Foam
Other available things are

In swak4Foam
Adding lagrangian particles by function objects
Arbitrary source terms
Control of the solution
Execute Python programs
. . .

PyFoam
Support for parallel runs
Flexibly preparing cases
Controlling runs over the net
Rewriting dictionaries
. . .

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 140 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Further reading

This presentation only covered parts of PyFoam and swak4Foam, but
there is further information available:

On the OpenFOAM-wiki:
http://openfoamwiki.net/index.php/Contrib/swak4Foam in the
section Further Information are links to previous presentations
http://openfoamwiki.net/index.php/Contrib/PyFoam in section
Other material

The Examples directory of the swak-sources
Did I mention the Incomplete reference guide for swak?
The --help-option of the PyFoam-utilities

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 141 / 144

http://openfoamwiki.net/index.php/Contrib/swak4Foam
http://openfoamwiki.net/index.php/Contrib/PyFoam

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Further presentations

pyFoamPrepareCase.py can handle lots of things
With something called templates
See "Automatic case setup with pyFoamPrepareCase" from the Ann
Arbor Workshop 2015

We skipped the parts about writing data
These are explained in another presentation

"PyFoam for the lazy" from 2016

The training about advanced swak-usage in the same session

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 142 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

Goodbye to you

Thanks for listening
Questions?

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 143 / 144

Introduction Simple setting up and running Starting to work with expressions Boundary conditions Adding more features Conclusions

License of this presentation

This document is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License (for the full text of the
license see
http://creativecommons.org/licenses/by-sa/3.0/legalcode).
As long as the terms of the license are met any use of this document is
fine (commercial use is explicitly encouraged).
Authors of this document are:
Bernhard F.W. Gschaider original author and responsible for the strange

English grammar. Contact him for a copy of the sources if
you want to extend/improve/use this presentation

Bernhard F.W. Gschaider (HFD) swak4Foam and PyFoam Exeter, 2017-07-24 144 / 144

http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Introduction
	This presentation
	Who is this?
	What are we working with
	Before we start

	Simple setting up and running
	Starting a case
	Preparing results

	Starting to work with expressions
	Introducing funkySetFields
	First function objects
	Creating a full field

	Boundary conditions
	Introducing groovyBC
	Evaluations on boundaries

	Adding more features
	Smoothing the floor temperature
	Backport of lumped condition
	Variable heat transfer

	Conclusions

