
Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Expressive swak4Foam
Exploring the dark unknown corners

Bernhard F.W. Gschaider

HFD Research GesmbH

Duisburg, Germany
23. July 2019

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 1 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline I

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 2 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline II
Implemented function plugins

5 Other parser
Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 3 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 4 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

This presentation

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 5 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

This presentation

Content

This is about swak4Foam
The title of the presentation was a strong hint

Different aspects of the expressions that are the heart of it
Various advanced topics that are rarely discussed

But allow pretty cool stuff
A bit of "theory" on the implementation

That explain some of the problems when using swak4Foam

Not special function objects etc
Information here is applicable to almost any component of
swak4Foam

Some examples
But only sketches. The full examples can be found in the
swak4Foam-sources

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 6 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

This presentation

Intended audience

People who have worked a bit with swak4Foam
or at least took the basic course in the previous session

basic stuff won’t be spelled out

Ever wondered why some expressions failed with a strange error?
this presentation is for you

Ever thought "there must be a way to do this"?
this presentation is for you

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 7 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

This presentation

Format

Different topics will be covered
Only small examples

Therefore this training will be purely "lecture style"
No exercises on the computer

If names of example cases are give they can be found in the
Examples directory of the sources

For instance groovyBC/pulsedPitzDaily is found at
Examples/groovyBC/pulsedPitzDaily

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 8 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Who is this?

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 9 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Who is this?

Bernhard Gschaider

Working with OpenFOAM™ since it was released
Still have to look up things in Doxygen

I am not a core developer
But I don’t consider myself to be an Enthusiast

My involvement in the OpenFOAM™-community
Janitor of the openfoamwiki.net
Author of two additions for OpenFOAM™

swak4foam Toolbox to avoid the need for C++-programming
PyFoam Python-library to manipulate OpenFOAM™ cases

and assist in executing them
In the admin-team of foam-extend
Organizing committee for the OpenFOAM™ Workshop

The community-activies are not my main work but collateral damage
from my real work at . . .

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 10 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Who is this?

Heinemann Fluid Dynamics Research GmbH

The company

Subsidary company of
Heinemann Oil

Reservoir Engineering
Reservoir management

Description

Located in Leoben and Vienna,
Austria
Works on

Fluid simulations
OpenFOAM™ and
Closed Source

Software development for
CFD

mainly OpenFOAM™

Industries we worked for
Automotive
Processing
. . .

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 11 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 12 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

What is swak4Foam

From http://openfoamwiki.net/index.php/Contrib/swak4Foam

swak4Foam stands for SWiss Army Knife for Foam. Like that knife it
rarely is the best tool for any given task, but sometimes it is more

convenient to get it out of your pocket than going to the tool-shed to get
the chain-saw.

It is the result of the merge of
funkySetFields
groovyBC
simpleFunctionObjects

and has grown since
The goal of swak4Foam is to make the use of C++ unnecessary

Even for complex boundary conditions etc

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 13 / 146

http://openfoamwiki.net/index.php/Contrib/swak4Foam

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

The core of swak4Foam

At its heart swak4Foam is a collection of parsers (subroutines that
read a string and interpret it) for expressions on OpenFOAM-types

fields
boundary fields
other (faceSet, cellZone etc)

. . . and a bunch of utilities, function-objects and boundary
conditions that are built on it
swak4foam tries to reduce the need for throwaway C++ programs
for case setup and postprocessing

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 14 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

Supported versions and release policy

swak4Foam has no fixed release schedule. Releases happen
when I have time for it

try to do it 2 times a year
when there were releases of OpenFOAM-forks recently

and the code is sufficiently stable
tested against all supported forks

The supported OpenFOAM-versions (in the forthcoming release) are
latest released ESI OpenFOAM-release (currently v1906)
latest version of the nextRelease-branch of foam-extend
latest released Foundation OpenFOAM-release (currently 7)
OpenFOAM 2.3

this makes sure that OpenFOAM-releases between that are not
broken

If your OpenFOAM-release is not yet supported look at the
develop-branch of the source repository

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 15 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

Available documentation

There is not much documentation on swak4Foam
Documentation that comes with sources of swak4Foam (and is
maintained in parallel with it)

1 the README-file
2 the incomplete reference manual
3 the example compatibility matrix

Various presentations
1 here at the workshop

training on specific topics
2 presentations at PFAU (Austrian User Group meeting)

mostly descriptions of new features

They can be found on the Wiki https://openfoamwiki.net

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 16 / 146

https://openfoamwiki.net

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

README

Contains
how to build swak4Foam

how to develop for swak4Foam
short descriptions of the things in the package
News in the releases

every time a feature is added this is updated
so even the develop-branch always lists changes to the last release
usually a description of the feature is given here

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 17 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

Reference manual

This is called the Incomplete Reference Manual
It is a work in progress

Existing parts are adapted if anything changes
New parts are written when I find time

I hardly have time

Completed parts are
the parser and expressions

all built-in functions and operators
structure of dictionaries (variables etc)

bits and pieces
scripting language integration
state machines

Missing parts are
List of utilities
List of function objects
List of boundary conditions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 18 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak4Foam

Compatibility matrix

There are two orthogonal factors
1 The 4 supported versions

Which are sometimes incompatible in their dictionary format

2 Lots of cases in the Examples-directory
It is hard to tell if all 4×N combinations work

Some cases have features that are not supported by all forks
The Example Compatibility Matrix tries to keep track of these
combinations

Only for a sub-set of the existing examples
But new examples are usually added to the matrix

It is recorded here which combinations work
To make sure that cases work with different versions
pyFoamPrepareCase.py is used

There exists different presentation on that
But usually this command is sufficient to prepare cases

pyFoamPrepareCase.py .

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 19 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 20 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 21 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Expressions in swak4Foam

The evaluation of expressions is the core functionality of swak4Foam
In the dictionaries the expression manifests as a simple string

between " and "

The string is read and transformed into an evaluation
The result of the evaluation is used

To modify fields
Print information
other stuff

The content of the expression string has to follow some rules
The grammar

If the string doesn’t conform to the grammar it is syntactically
incorrect

The act of checking that the expression conforms to the grammar is
called parsing
The grammar has to "make sense"

For instance: you can’t add a scalar to a vector

When parsing is finished swak4Foam konws "what to do"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 22 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

What is a parser?

In swak4Foam a parser is a grammar and the part of the program
that supports it
The design principles for the swak4Foam-parsers are

1 Syntax should be similar to OpenFOAM C++-expressions
Not always possible

2 "Least surprise": only obvious actions should be done
swak4Foam should not "guess" what the user wants
things have to be written down explicitely

3 Backward-compatibility
grammar should not change once it is released
"write once: use for centuries"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 23 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Parser / Lexer /Driver

The trinity

lexer breaks the string into
tokens like 3.1415,
+, rho

parser takes the tokens and
checks that they
conform to some
rules like "scalar +
scalar is a scalar"

driver the part that does the
actual calculations
(add the two scalars
and store the results
in the correct
location)

Relationship Driver/Lexer/Parser

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 24 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

The parsers

Here are the different libraries the parsers reside in
With the parsers in them

The ones with « grammar » are actual grammars
The others are "just" different drivers

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 25 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Selection of the correct parser

There are two ways to get a parser in swak4Foam
1 You can’t select it because it is hardcoded (because there is only one

"natural" parser)
for groovyBC only calculations on a patch make sense
full fields are calculated with funkySetFields

2 the wanted parser has to be selected
for instance in the swakExpression function object
usually via a valueType directory entry

some parsers need additional information (patch name for instance)

Like everything in OpenFOAM parsers are run-time selectable
the banana trick applies
additional parser can be added via libraries

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 26 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Parser names

These are the currently existing parsers selectable via valueType

name Description
internalField Calculation on the internal values of a field
patch Calculation on a boundary patch
faceZone On a faceZone of the mesh
faceSet On a faceSet
cellZone Calculation on a cellZone
cellSet Set of cells
set Calculation on a sampledSet
surface Calculation on a sampledSurface
cloud Calculation on a cloud of lagrangian particles
internalFaField Internal values of a FAM-field (not all forks)
faPatch Boundary patch of a FAM-field (not all forks)

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 27 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Parser looks for a name

When the lexer encounters a field name T it
1 Looks for something called T

See two next slides how that works

2 Inspects it
Looks for the value type: scalar, tensor, . . .
Looks for the field type: volume field, surface field . . .

not always necessary

3 Reports back to the parser
"token T is a scalar volume field"

4 The parser tries to make sense of it
"I can add that to the scalar I got before"

Goes on parsing

or
"can’t add this scalar volume field to the vector surface field"

Fails with a syntax error

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 28 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

How the parser finds fields

Two options
1 File of that name on disk

This only happens for pre/post-processing utilities like
funkySetFields
function objects and boundary conditions don’t do this

would be a performance desaster
. . . and inconsistent

2 Objects in memory
OpenFOAM has a data structure called "the objectRegistry"

almost all fields are registered there
OpenFOAM uses it for things like automatically writing files
it is brilliant: swak4Foam wouldn’t work without it

when swak4Foam encounters a name it looks for it there
if found it checks whether it matches a required type

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 29 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Name resolution order

swak looks for names in that order (first match wins)
1 name of a mesh (not discussed here)
2 a timeline (not discussed here)
3 a lookuptable (not discussed here)
4 a 2D lookup table (also not discussed. See Incomplete reference)
5 Variable

possibly shadowing a field of the same name
there is a warning for that

6 Field
on disk or in memory
possibly using aliases (see below)

7 Plugin functions (see below

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 30 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Common options

When initializing a parser swak4Foam looks for some optional parameters
in the same sub-dictionary

variables most often used: variables to make things more readable
storedVariables, delayedVariables we’ll talk about these later
timelines, lookuptables, lookuptables2D getting functions from datafiles.

Look at the reference manual for details
searchOnDisc, searchInMemory, cacheReadFields Change the way

swak4Foam looks for fields. Hardly needed
debugCommonDriver, traceParsing, traceScanning Switches for

debugging the parser. Usually only needed by developers
aliases we’ll get to that later

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 31 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

General

Make sure that it fails

Not really a swak4Foam topic
OpenFOAM tries to be tolerant about configuration errors in
function object

if there is a configuration error then OpenFOAM just prints a warning
happily goes on simulating
. . . but without the results of the function object

Personal opinion
This is not a good idea

Because I run OpenFOAM for the results. Not to burn CPU-hours

As some swak4Foam-setups are non-trivial there is a good chance
that you make mistakes the first time around

But OpenFOAM makes you believe that all is good

To get the old behaviour set this environment variable

export FOAM_ABORT=1

that way OpenFOAM fails for every swak4Foam-problem

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 32 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 33 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Everything happens on the mesh

Although the expressions look continuous they are evaluated on
discrete elements

cells, points, faces

Not every function is defined on cells/points/faces
Sometimes a operation changes the mesh element type of the result

Sometimes the straightforward implementation gives wrong results
because of these differences

Example on the next slide

swak4Foam offers ways to convert between mesh element types

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 34 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Points vs faces

Consider these implementations of a parabolic inlet condition

Get range from face centers

This is how people usually do it the
first time
movingWall
{

type groovyBC;
value uniform (1 0 0);
variables (

"xMin=min(pos().x);"
"xMax=max(pos().x);"
"x=pos().x;"

);
valueExpression "normal ()*(x-xMin)*(<brk>

<cont> xMax -x)";
}

pos() is the positions on the face
centers

Get range from points of the mesh

This is how it should be done
movingWall
{

type groovyBC;
value uniform (1 0 0);
variables (

"xMin=min(pts().x);"
"xMax=max(pts().x);"
"x=pos().x;"

);
valueExpression "normal ()*(x-xMin)*(<brk>

<cont> xMax -x)";
}

pts() is the positions of the mesh
points

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 35 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Comparing implementations

Figure: "Boundary cells" are zero and maximum is wrong on the left side

The left implementation has a wrong mass-flow

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 36 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Native and secondary mesh elements

Every parser has a preferred mesh element it works on
We call this the native structure
This is usually the "natural" element for the FVM

For instance: for patches the native structure is the face
For fields the native structure is the cell

There is another element type that is the build block of the native
structure

We call this the secondary structure
For instance: for patches the secondary structure is the point

Fields are special because they have two secondary structures: face
and point

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 37 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Native and secondary for the different parsers

Parser native structure secondary structure
internalField Cell values Face values and point values
patch Face values Point values
faceZone Face values none
cellZone Cell values none
faceSet Face values none
cellSet Cell values none
set Values on sample points none
surface Values on the facets vertices - not yet implemented
cloud Values on the particles none
internalFaField Area (face) values Edge values
faPatch Edge values Point values

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 38 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Interpolating values

Going to other structures

To go from one structure to
another there are interpolation
functions
Based on regular
OpenFOAM-functionality
Caution: interpolating
usuallyresults in information
loss
Interpolate temperature field to
faces:

interpolate(T)

The functions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 39 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

Constants are always "native"

One problem that people usually have is that constants are "only"
native

This comes from the "least surprise"-principle

To use on secondary structure the constant has to be interpolated

doesn’t work
mag(pts()-vector (0,1,0))

works
mag(pts()-interpolateToPoint(vector (0,1,0)))

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 40 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Native vs secondary

The weight

most parsers have a function weight()
this is the property that would normally be used as a weighting
factor when averaging

Cell volume vol() for the internalField
Face area area() for everything "flat": patches, sampled surfaces, ..
1 for sampled sets
For "simple" particles it is 1
For KinematicCloud and up it is the parcel mass: particle number
times the particle mass

allows general writing of expressions
they can be re-used on cells and faces without rewriting

sum(T*weight())/sum(weight()) instead of
sum(T*vol())/sum(vol()) on the =internalField
sum(T*area())/sum(area()) on a patch

this is the property that is usually used for the accumulation
weightedAverage

and all other accumulations with weighted in the name

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 41 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Uniform

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 42 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Uniform

What are uniform expressions

OpenFOAM has two ways to store Fields
uniform the whole field has the same value

nonunifom at least one element is different from all the others
But in memory uniform needs the same amount of storage
When swak4Foam stores intermediate results it makes a similar
distinction

if all values are the same the value is marked as uniform
needs less memory as well

When assigning to a OpenFOAM-structure the whole structure is set
to the same value
Uniform values can be used interchangably

No interpolation needed

Functions that generate uniform values:
min / max
average / sum
minPosition / maxPosition

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 43 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Uniform

Where do I need uniform expressions

Sometimes uniform values are required
Mostly in situation interpolating to different entities would be
required

For instance from one patch to another patch
The reason is:

"least surprise"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 44 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Uniform

Accumulations

Related but not the same:
When printing expression results the full field would be too long

Should be broken down to a single value
This is done by the accumulations
Some accumulatons are

min / max
average / weightedAverage
sum /weightedSum
. . . .

But this is only a post-processing thing
Not stored

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 45 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

My information is not there

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 46 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

My information is not there

Reasons why fields are not found

Often we get an error message

field foo not existing or of wrong type

Possible reasons are
You mis-typed the name and it is really not there

Sometimes the computer is right (rarely)
The field is of the wrong type

swak4Foam tells you what type it expects
For p+U it probably will complain because it expected a
volScalarField

There was a field of that name. But not anymore
For instance the thermophysical libraries like to create temporary
fields vor cp etc

They are removed when they are not needed anymore
The field exists but the objectRegistry doesn’t know it

That can happen if a second temporary field with the same name is
created. It "kicks" the first one out of the registry

The field doesn’t have a name swak4Foam can handle
Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 47 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

My information is not there

Getting a list of things

swak4Foam has a function object that lists all the fields that
currently in memory

functions in system/controlDict

whatIsThere {
type listRegisteredObjects;

}

Output

Content of object registry region0
Name Type Autowrite

======================== ============================= =========
K IOobject No

K_0 IOobject No
MRFProperties IOobject No

T volScalarField Yes
<snip>

thermo:alpha IOobject No
thermo:mu IOobject No

thermo:psi IOobject No
thermo:rho IOobject No

thermophysicalProperties dictionary No
turbulenceProperties dictionary No

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 48 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

My information is not there

Valid names in OpenFOAM vs swak4Foam

What swak4Foam considers a valid field name is a sub-set of the
valid field names in OpenFOAM

only letters, digits and _
may not start with a digit

OpenFOAM is more liberal
Characters like : . are allowed in a name

These characters have different meanings for the swak4Foam-parsers

Everything that is a word for OpenFOAM can be a field name

This means that fields like thermo:rho or alpha.water are not
accessible for swak-expressions

But we want to access them

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 49 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

My information is not there

Aliases

Workaround is a lookup table that says "if you see this swak name
we really mean this OpenFOAM name"

This is a dictionary called aliases in the dictionary that has the
parameters for the parser

aliases
aliases {

rhoAir thermo:rho;
alphaWater alpha.water;
gasPressureNameForPeopleWhoLikeLongNames p;

}

expression "(1- alphaWater)*rhoAir";

Try to make sure that your aliases don’t have the same name as
existing fields

This can lead to weird results

Of course you can have aliases for field names without special
characters

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 50 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 51 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

"Don’t repeat yourself"

Configuration dictionaries for swak4Foam-components can be quite
long

expression, valueType, variables . . .
Sometimes we need many similar evaluations

then changes need to be done in many places
OpenFOAM helps with that

the mechanism is called macro expansion

swak4Foam evaluations are usually related to the
OpenFOAM-simulation

Sometimes a constant from the OpenFOAM-configuration is needed
in the swak-expression as well
if it has been "copied" over then it has to be changed once the
original is change

otherwise the evaluation is wrong
swak4Foam has a mechanism to help with that

it is based on OpenFOAMs macro expansion

Both mechanism are done only once during calculation
at slightly different times

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 52 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

OpenFOAM macro expansion

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 53 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

OpenFOAM macro expansion

Macro expansion in OpenFOAM

Macro expansion usually starts with $

Simple macro expansion

in the simplest case the $ is followed by a name

the value of the name is copied over

a inlet;
b $a; // also "inlet"

this is only done when the dictionary is read
if it is rewritten there will be no $a but inlet

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 54 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

OpenFOAM macro expansion

"Copy and modify"

There is a mechanism for dictionaries to "inherit" from others

In functions in controlDict

Name of a dictionary between $ and ; pulls in the whole dictionary
Subsequent entries "overwrite" the original values

TValues {
type swakExpression;
valueType internalField;
expression "T";
verbose true;
accumulations (

min
weightedAverage
max

);
}
kineticEnergy {

$TValues;
expression "rho*U&U";

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 55 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

OpenFOAM macro expansion

Advanced dictionary access

The mechanisms so far only work on the same dictionary level

Accessing dictionary values and traversal

. and : after the $ change the level that is accessed

a 10;
dict {

b $..a; // go up one level
subdict {

c $...a; // two levels
d $:a; // top level

}
}
e $dict.b; // access sub -dictionary

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 56 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

OpenFOAM macro expansion

Including other files

#include pulls in the content of another files
only as text. Parsing happens as a whole

This allows "reuse" of dictionary content across files

bcValues
All boundary conditions in one place
TWall 300;
UWall (0 0 0);

T
Using in one field file
#include "bcValues";
internalField uniform $TWall;
boundaryField {

wall {
type fixedValue;
value $internalField;

}
}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 57 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

OpenFOAM macro expansion

It all happens only once

Macro expansion is more flexible than C++ macro-expansion
Knows about the structure of the file

Still it is not a link
The value at the first evaluation "sticks"

If the original changes the "expanded" value stays the same
Sometimes it would be nice to have it change as well
But usually the current behavior is better (think $internalFields in
boundary conditions)

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 58 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 59 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

Does swak need its own expansion?

No
But it is nice to have

swak4Foam macro expansion happens after OpenFOAM macro
expansion

But before the first evaluation happens
While the string is read

Done for all strings that hold expressions
variables etc

It is also triggered by presence of $ in the expression strings
Done until there is no more $ in the string

The resulting string is stored in memory
It is the one seen during error messages

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 60 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

Simple values

This is done for variables that are on the same level as the
expression string
The sub-string $name is replaced by the value of the variable name

The name may only consist of letters, digits and _
May not start with a digit
The first non-matching character is terminating the name

Getting the density

kineaticEnergy {
rho 1.245;
expression "$rho*U&U";

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 61 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

More complicated values

if things like dictionary traversal are needed the macro has to be
written like this: $[macro]

The regular macro expansion $macro is done
The result is placed into the expression string

Getting the density from the top

rho 1.245;
kineticEnergy {

expression "$[:rho]*U&U";
}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 62 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

Casting special values

Sometimes the expanded value is not a valid swak4Foam-expression
In such cases it has to be "cast" to the desired type

This includes vector ((1 2 3) to vector(1,2,3)) and tensor
Syntax is similar to C-casting: $[(type)macro]

Get $macro and interpret is as type
Most common types are implemented
Complete list of types can be got by setting type to banana

Getting the dimensioned density

rho rho [1 -3 0 0 0 0 0] 1.245;
kineticEnergy {

expression "$[(dimensioedScalar):rho]*U&U";
}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 63 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

Example: non-breaking dam

Description

The geometry from the
damBreak-tutorial is reused
Modifications:

One "basin" is filled with
water

No water column
Walls of the obstacle in the
middle are "conveyors"

Against the gravity
direction
Only component
"parallel" to gravity

Conveyors switch off after
60% of the simulation time

Geometry

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 64 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

Getting gravity direction

We want to reuse the gravity that is already there

constant/g

dimensions [0 1 -2 0 0 0 0];
value (0 -9.81 0);

0/U

Including into sub-dictionaries doesn’t "pollute" the dictionary as
much

In this case we also avoid a "clash" of the dimensions

dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);

g {
#include "$FOAM_CASE/constant/g"

}

control {
#include "$FOAM_CASE/system/controlDict";

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 65 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

The boundary condition

Gets the down-direction by normalizing the gravity vector
removes the component perpendicular to the wall
Switches off after 60% of the run-time

0/U

lowerWall
{

type groovyBC;
value $internalField;
valueExpression "-doIt *100* down*(alphaW >0.1␣?␣1␣:␣0)";
variables (

"g=$[(vector):g.value];"
"down=g/mag(g);"
"normalPart=normal ()␣&␣down;"
"down=down -normal ()*normalPart;"
"end=$[: control.endTime];"
"doIt=time()<end*$endRatio␣?␣1␣:␣0;"

);
aliases {

alphaW alpha.water;
}
endRatio 0.6;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 66 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

swak macro expansion

Result: non-breaking

First splash Aftermath

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 67 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 68 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 69 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

Special needs

swak4Foam has a lot of functions built in
common mathematical functions like sin, cos to besselJ0, erf
information about the discretization like pos(), vol()
to more esotheric like distToPatch

But sometimes more special stuff is needed like
Information about the mesh-quality
Reaction rates
Calculated properties of the turbulence/thermophysics
Number of cells to the outlet

Adding all these to the parser
would pollute the namespace
bloat the libraries
make it hard to maintain the parsers

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 70 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

Function plugins

The solution are function plugins
libraries that can be loaded at run-time
add special functions to special lookup tables

these functions can be used in the parsers like built-in functions
a number of function-plugins come with swak4Foam

a incomplete list will follow
additional function plugins can be written yourself

use the existing ones as examples
the most complicated part is declaring the parameters and the return
value

and "registering" the functions
if a environment variable SWAK_USER_PLUGINS is specified then these
will be compiled by the regular Allwmake of swak4Foam

Content of the variable would be the locations of the library sources
separated by ;

by convention the names of the libraries
start with libswak
end with FunctionPlugin.so
the part between that is the name of the function plugin

the name of libswakMeshQualityFunctionPlugin.so is
MeshQuality

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 71 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

How to use

There are two ways to use function plugins

controlDict
This introduces them for the whole project
libs (

"libswakMeshQualityFunctionPlugin.so"
);

funkySetFields

Sometimes a function is only needed for post-processing
funkySetFields has an option to load function plugins

parameter is a comma-separated list of the plugin names

> funkySetFields -functionPlugins MeshQuality ,MeshWave -time 0 -create -field ortho -<brk>
<cont> expression "faceAverage(mqFaceNonOrtho ())"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 72 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

Listing available functions

if function plugins are load swak4Foam gives a complete list in the
beginning

unfortunately this currently is all the documentation there is

on the output

"Loaded␣plugin␣functions␣for␣’FieldValueExpressionDriver ’:"
cellColouring:

"volScalarField␣cellColouring ()"
floodFillFromCells:

"volScalarField␣floodFillFromCells(internalField/volLogicalField␣blockedCells)"
floodFillFromFaces:

"volScalarField␣floodFillFromFaces(internalField/surfaceLogicalField␣blockedFaces)"
meshLayersFromCells:

"volScalarField␣meshLayersFromCells(internalField/volLogicalField␣blockedCells)"
meshLayersFromFaces:

"volScalarField␣meshLayersFromFaces(internalField/surfaceLogicalField␣blockedFaces)"
meshLayersFromPatch:

"volScalarField␣meshLayersFromPatch(primitive/word␣patchName)"
mqCellAspectRatio:

"volScalarField␣mqCellAspectRatio ()"
mqCellFaceNr:

"volScalarField␣mqCellFaceNr ()"
mqCellShape:

"volScalarField␣mqCellShape ()"
mqFaceNonOrtho:

"surfaceScalarField␣mqFaceNonOrtho ()"
mqFaceSkewness:

"surfaceScalarField␣mqFaceSkewness ()"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 73 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

Explanation of the function descriptions

Each parser has a separate list
One line Loading plugin functions for

Description of a function consists of two lines
1 the name of the function
2 calling convention

1 type of the return value
2 name of the function (again)
3 List of the parameters inside ()

Description of a parameter consists of
1 type of sub-parser used for this parameter
2 a /
3 expected type of the value returned by the sub-parser
4 a descriptive name for the parameter

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 74 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

Sub-parser

the sub-parser can be either
a swak4Foam parser

this is a full parser (uses all parameters and can have sub-parsers)
primitive indicates that a simple (OpenFOAM) value is read

like scalar, word, string
OpenFOAM is used to parse it

the sub-parser is used until an unmatched , or) is found
if the sub-parser fails then it is a problem of the sub-parser

but the problem escalates to the "parent" parser
error messages are printed as a "stack"

the sub-parsers at the bottom

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 75 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Function plugins

Stacked error messages

floodFillFromCells expects a logical expression
result is the source region
cells that can be reached from the source region are marked
purpose: mark unconnected regions of the mesh

if the parser doesn’t end with a logical expression then it fails

Sub-parser fails

> funkySetFields -functionPlugins MeshWave -time 0 -create -field fromTop -expression "<brk>
<cont> floodFillFromCells(pos().y<0)"

... runs OK
> funkySetFields -functionPlugins MeshWave -time 0 -create -field fromTop -expression "<brk>

<cont> floodFillFromCells(pos().y)"
....
--> FOAM FATAL ERROR:
Parser Error for driver FieldValueExpressionDriver at "1.8" :" syntax error , unexpected ’)<brk>

<cont> ’"
"pos().y)"

^
--------|

Context of the error:

- Driver constructed from scratch
Evaluating expression "floodFillFromCells(pos().y)"
Plugin Function "floodFillFromCells" Substring "pos().y)"

- Driver constructed from scratch
Evaluating expression "pos().y)"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 76 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 77 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Discretization

when using div() and grad() in the regular parser the settings
from systen/fvSchemes are used

only explicit (fvc) implementations are used

the FvcSchemes and FacSchemes plugins give direct access to the
discretization schemes

bypasses fvSchemes
specification string is a parameter (needs "" around it)

names are slightly different from the regular name
expected parameter value type is part of the name (Scalar, Vector,
. . .)

Difference of schemes
It is quite instructive to see the difference between discretizations
> funkySetFields -functionPlugins FvcSchemes -time 100 -create -field diffUpwind -<brk>

<cont> expression "fvcConvectionDivScalar(phi ,fraction ,\" Gauss upwind \")-<brk>
<cont> fvcConvectionDivScalar(phi ,fraction ,\" Gauss linear \")"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 78 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Mesh Wave

Functions that are based on the MeshWave algorithm in OpenFOAM
traverses the mesh and sets values based on this
works in parallel

Function-"classes" are
floodFill for finding connected mesh regions
meshLayersFrom for finding the "discretization distance= from
certain features

applications like "treating the 2 cell layers from the oulet differently"
cellColouring "colors" the cells so that no two neighbouring cells
have the same colour

with a minimum number of colours
application: showing the mesh structure in ParaView

Plugin name is MeshWave

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 79 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Accessing physical models

Plugins to access physical sub-models like
Transport properties

viscosity etc
Thermophysical models
Radiation

Absorpiton coeffs etc
Chemistry

Reaction rates etc
Turbulence

Does so by looking for the model in the objectRegistry
Calling the appropriate methods
If called from funkySetFields they try to load this model

May not work everywhere
These plugins give access to information that is always there

But OpenFOAM doesn’t give voluntary access to it
Plugin names are

ThermoTurb
TransportTurb
RadiationModel
ChemistryModel

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 80 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Mesh Quality

This plugin gives access to information that checkMesh only reports
summarized

Orthogonality
Skewness
Aspect ratio
Cell shapes

Uses the "original" functions
Some quantities are not easily post-processed because they are
face-based

for instance the orthogonality
ParaView can’t handle that

Plugin name is MeshQuality

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 81 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Local calculations

This library does local calculations over the faces of cell
Stores the results per cell

Originally introduced to make visualizations of MeshQuality-results
possible

"orthogonality of the cell is the maximum orthogonality of its faces"

Implemented calculations are
minimum
maximum
average

Plugin name is LocalCalculations

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 82 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Velocity and mesh movements

There are plugins concerned with movement in different forms
Velocity functions on the velocity field

Courant numbers
the stream-function

MRF the moving reference frame model
make velocities absolute and relative

DynamicMesh properties of the mesh movement
mesh Courant number
mesh velocity and flow

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 83 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Getting discrete to continuous

Plugins that "project" discrete structures to continuous fields
LagrangianCloudSources influences of a cloud on the continous phase

mass and volume fraction of the cloud
source terms for equations (momentum, mass, energy,
. . .)

SurfacesAndSets sampled surfaces and sets in the continuous phase
"does the set/surface touch this cell"
"how big is the relative area of the surface in this cell"
"how big is the distance of the set/surface to this
cell"
. . .

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 84 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Spatially shifting values

The plugin ShiftField allows shifting the value of fields
Application "Give me the temperature 2 meters from this place"

Different variations
How the shift vector is calculated (constant or calculated)
How areas "ouside" should be treated (default)

This relies on the mesh interpolation of the underlying
OpenFOAM-fork

Quality of results differ

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 85 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Implemented function plugins

Which quantile is the current cell in

The plugin is named Quantile
helps finding things like "the hottest 10% of the geometry"

Calculates the distribution function of the field
Then reports for each cell how many percent of the volume is
smaller than this

Also allows comparing to a different distribution
Example: comparing the temperature of two different phases

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 86 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 87 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 88 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Zones and sets

OpenFOAM has two kinds of "subsets" for meshes
Zones

can not change
mutual exclusive
loaded automatically when mesh is loaded

Sets
can change their content
a cell can belongto more than one set
loaded when needed

These exist for
cells
faces
points

swak4Foam has one parser for all of them
called the Subset parser
the drivers are different
drivers exist for

cell zones and sets
face zones and sets
not for points (never needed it)

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 89 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Restrictions

The subset parser has no secondary data structure
what would that be? "the faces of a cell set"?
OpenFOAM has no support for it

So it would mean a complete reimplementation

One parser for multiple drivers means that there are undefined
functions

For instance: vol() is not defined for faceZone
If you call it the expression will fail

If such an inappropriate function is called the driver fails

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 90 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Interpolation for faces

faceSet and faceZone do their calculations on the faces
Hardly any values in OpenFOAM are defined on the faces

Most notable exception: the flux phi

So hardly anything of interest could be calculated there
swak4Foam can interpolate cell values to the faces

But it doesn’t so automatically
"Principle of least surprise"

Has to be switched on by the autoInterpolate option
Otherwise it fails (because the field can not be found)

Still issue a warning every time it interpolates
Can be switched off by warnAutoInterpolate

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 91 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Orientation of faces

when using things like phi on faceSet or faceZone it is not sure
that correct results are calculated

because some faces might be oriented differently and then the sign of
phi is "wrong" there

for this exists the variable flip()
1 for "correctly" oriented faces

correctly" is a question of definition

-1 for others
for faceZone the value of flip() is "defined" and set by the
OpenFOAM-utilities
for faceSet the default is 1

unless an appropriately named cellSet is found
for a faceSet named foo the name would be fooSlaveCells

then flip() is calculated in such a way that flip()*face() points
away from these cells

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 92 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Statically creating sets and zones

the library libswakTopoSources.so adds new topological sources
Can be used everywhere these are used to add entities based on
expressions

If the logical expression evaluates to true then the cell/face/point is
part of the set/zone
Special case face: if the expression is defined on the cells then the
boundary between true and face is used

system/topoSetDict in other/topoSetDam

actions (
{

type faceSet;
name middleFaces;
action new;
source expressionToFace;
sourceInfo {

expression "pos().x >0.291";
}

}
{

type cellSet;
name centerCells;
action new;
source expressionToCell;
sourceInfo {

expression "mag(pos()-vector (0.291 ,0.291 ,0.007))␣<␣0.1";
}

}
);

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 93 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Loading sets

cellSet, faceSet, pointSet are only loaded by code that needs
them

Then they are also registered with the objectRegistry

If we want to use them in a swak-expression we got to load them
There is a function object for that

Loads sets and registers them at the objectRegistry

system/controlDict in other/topSetDam

getTheSets {
type loadTopoSets;
forceLoading true;
loadCellSets true;
loadFaceSets true;
loadPointSets false;
writeSets true;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 94 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Calculating on the sets

Once loaded the sets can be used for calculation

system/controlDict in other/topSetDam

middleLiquid {
type swakExpression;
valueType faceSet;
setName middleFaces;
aliases {

aWater alpha.water;
}
verbose true;
expression "aWater";
accumulations (

min
weightedAverage
max

);
autoInterpolate true;
warnAutoInterpolate false;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 95 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Zones and sets

Dynamically creating and manipulating sets

There function objects for that

system/controlDict in other/topSetDam

This collects all "non-pure" cells and calculates their velocity
undecidedCells {

type manipulateCellSet;
cellSetName undecided;
aliases {

aWater alpha.water;
}
mask "0.1< aWater␣&&␣aWater <0.9";
createMissing true; // create set if it is not already there
outputControl timeStep;
outputInterval 1;

}
undecidedVelocity {

$middleLiquid;
valueType cellSet;
setName undecided;
expression "mag(U)";
accumulations (

size
weightedAverage
max

);
}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 96 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Sets and surfaces

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 97 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Sets and surfaces

Sampled sets and surfaces

Sampled sets are collections of points on which values can be
collected during time

They used to be called probes

Samples surfaces are surfaces on which values can be collected
Can be defined in various ways

Pure geometric specification
in relation to patches
as iso-surfaces of a value

Advantage compared to faceZone and faceSet: doesn’t have to be
aligned to the mesh

Disadvantage: computationally "expensive"

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 98 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Sets and surfaces

A repository of their own

Sampled set s and surface s are mostly used in function objects of
the same name

That is why there are not registered in the objectRegistry
Which makes it hard for swak4Foam to access them

swak4Foam introduces their own registry for it
sets and surfaces from the "regular" function objects are
unfortunately not registered there
but sets and surfaces registered there can be reused

just specify type swakRegistryProxy;
needs setName for sets
surfaceName for surfaces

Information about these repositories is automatically written at write
time

Repository handles writing of these sets and surfaces as well
if autoWriteSurface (or Set) is specified
needs surfaceFormat (or set) to be specified
writing at creation can be forced with writeSurfaceOnCreation

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 99 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Sets and surfaces

Creating them with a function object

controlDict of
FromPresentations/OSCFD_cleaningTank2D

Create (and update) a surface that
is at the water/air interface
createInterface
{

type createSampledSurface;
outputControl timeStep;
outputInterval 1;
surfaceName interface;
surface {

type isoSurfaceCell;
isoField fraction;
isoValue 0.1;
interpolate true;

}
writeSurfaceOnConstruction true;
autoWriteSurface true;
surfaceFormat vtk;

}

later in the same file
Sample at a single point (the sensor
location)
createMeasurment
{

type createSampledSet;
outputControl timeStep;
outputInterval 1;
setName sensor;
set {

type cloud;
axis x;
points (

(0.45 0.1 0.025)
);

}
writeSetOnConstruction true;
autoWriteSet true;
setFormat vtk;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 100 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Sets and surfaces

Values on surfaces

Interpolation

volume fields can be used as
usual

although not really "defined"
on the surface

Each function object has to
specify with
interpolationType how the
values should be sampled

controlDict of
other/capillaryRise

Report the velocity of a surface
velocity
{

type swakExpression;
valueType surface;
surfaceName interface;
verbose true;
expression "mag(U)";
accumulations (

max
);
interpolationType cell;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 101 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Sets and surfaces

Surface properties

Properties of the surface

surfaces and sets have special
functions to access the
properties of their components

pos() for the positions
area() for the sizes of the
triangles
normal() for the normal
vector

controlDict of
FromPresentations/OSCFD_cleaningTank2D

Height (assuming y is "up") of the
interface
height
{

type swakExpression;
valueType surface;
surfaceName interface;
verbose true;
expression "pos().y";
accumulations (

min
max
size

);
interpolationType cellPoint;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 102 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Particles

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 103 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Particles

Lagrangian particles

Lagrangian parsers are organized in a separate library
Their implementation is a bit special because many interesting
properties are only accessible through C++-code

These calls differ between particle classes
And between OpenFOAM-version

For every known particle class swak4Foam implements a CloudProxy
that handles these calls

particleCloud
kinematicCloud
thermalCloud
reactingCloud

swak4Foam automatically selects the appropriate proxy for a cloud
for other clouds the user would have to write an adaptor class

Because nobody wants to look at the source code a list of available
functions is output when a cloud-parser is created

Includes short descriptions
Function names are usually the ones from the original C++-API
Beware: some are defined for particles some for parcels. Like the
C++-API

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 104 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Particles

List of properties

Output when a cloud parser is constructed

Driver for cloud dirt of type Cloud <basicKinematicParcel > (Proxy type: CloudProxy)
List of functions:

Name | Type | Description
--

U | vector | Velocity
UTurb | vector | Turbulent velocity fluctuations

active | bool | Is this parcel active?
age | scalar | Age of the prticle

areaP | scalar | Particle projected area
areaS | scalar | Particle surface area
cell | scalar | number of the cell

currentTimeFraction | scalar | Current fraction within the time -step
d | scalar | Diameter

dTarget | scalar | Target diameter
face | scalar | number of the face
mass | scalar | Particle mass

minParcelMass | scalar | Minimum parcel mass (constant)
nParticle | scalar | Number of particles

onBoundary | bool | is this currently on the boundary
onBoundaryFace | bool | is this currently on the boundary
onInternalFace | bool | is this currently on the internal

origId | scalar | Original id
origProc | scalar | Originating processor

rho | scalar | Density
rho0 | scalar | Particle density (constant)

rhoMin | scalar | Minimum density (constant)
stepFraction | scalar | fraction of the time -step completed

tTurb | scalar | Time in turbulent eddy
typeId | scalar | Type ID
volume | scalar | Particle volume

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 105 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Particles

Interpolating from the continuous phase

There is a function fluidPhase that gets the value of a fluid phase
field at location of the particle

For instance T-fluidPhase(T) gives the difference of the
temperature of a thermal parcel to the surrounding temperature

an optional dictionary interpolationSchemes specifies which
interpolation is to be used for the field T

otherwise the corresponding dictionary from the cloud specifiation
file in constant is used

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 106 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Particles

Other lagrangian stuff

There are two libraries with cloud function objects
swakCloudFunctionObjects Currently only has

eliminateBySwakExpression
eliminates parcels if an expression evaluates to true

simpleCloudFunctionObjects Gunction objects that are mainly for
diagnosing/fixing problems in the tracking algorithm

statistics of the number of faces particles
crossed/collided with etc
eliminate parcels that were caught in infinitely little
rebounds
tracing the paths (with all properties) of selected
parcels

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 107 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Other topics

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 108 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Other topics

Function1 / DataEntry with swak4Foam expressions

Most OpenFOAM-Versions have a data structure called Function1
Used to be called DataEntry

Represents a single value that depends on another variable
Frequently used in boundary conditions

Like flowRateInletVelocity
Value is the flow rate
Variable is the time

Run-time selectable
constant
table
. . .

swak4Foam adds an implementation that allows using an expression
for this

Configured by a dictionary
expression the actual expression

independentVariableName the name of the variable in the expression
valueType where the expression is evaluated. All other

parameters (patchName, variables . . .) depend on
that

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 109 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Other topics

Adjustable mass-flow

In this example the volume flow is ramped up to the proper value
This sometimes avoids instabilities at startup

system/controlDict

If no other swak4Foam things
(function objects, boundary
conditions ..) are used at
run-time then a special function
object has to be added

this has technical reasons

functions {
initSwak {

type initSwakFunctionObject;
region region0;

}
}

boundary in 0/U

inlet
{

type flowRateInletVelocity;
volumetricFlowRate swak {

expression "t<1␣?␣0.1*t␣:␣0.1";
valueType patch;
patchName inlet;
independentVariableName t;

};
value uniform (0 0 0);

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 110 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 111 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

External expressions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 112 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

External expressions

Variables

variables are one basic tool of swak4Foam
allow splitting calculations into smaller parts

the format is a list of strings
parts of a string are

1 variable name
2 = (assignment operator)
3 expression
4 ; (termination)

behavior of the variables can be adapted by
changing the variable to an external
listing it as special

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 113 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

External expressions

External expressions

Regular variable assignment

varName=expression;

External expressions are triggered by {}

varName{parserType’name/regionName}=expression;

parserType parser type (patch, internalField etc)
name specification for the parser (for instance the patch name to calculate on for

patch)
regionName the mesh region to use for multi-region cases

The value is calculated remotely but used locally
Restriction: because there is no general way to interpolate expression must yield a
uniform value (min, max, average, sum)

Simplifications:
When calculating on the same mesh regionName can get lost

varName{parserType’name}=expression;

If no ’ is found it is assumed that parserType is patch

varName{patchName}=expression;

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 114 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

External expressions

The classic: pressure drop

This is the most-used external expression

functions in controlDict
Calculating the pressure drop
pressureDrop
{

type swakExpression;
valueType patch;
patchName inlet;
verbose true;

variables (
"pOut{patch’outlet }=sum(p*area())/sum(area());"

);
accumulations (

weightedAverage
);

expression "p-pOut";
}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 115 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Global variables

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 116 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Global variables

Why globals?

Variables are local to each entity
boundary conditions
function objects

Sometimes there is a need to make data available to other entities
There are function objects that rely in this mechanism for making
their results available

Especially the scripting languages support

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 117 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Global variables

Global variables

To move data from one function object to another swak4Foam has
something called Global variables
To have some kind of separation they are organized in namespaces

Organize the variables into namespaces by "topic"
In our case solver for solver data

Function objects that can write global variables have an entry
toGlobalNamespace
Everywhere where you can specify variables you can add an
optional globalScopes

This is a list with names of global namespaces
All the variables in these namespaces are "injected" before the
regular variables
Attention: the size of the global variables must match the size of the
entity (for instance: number of faces)

If the variable is "uniform" it matches anywhere

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 118 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Global variables

Creating global variables

controlDict of FromPresentations/OSCFD_cleaningTank2D

defineState {
type addGlobalVariable;
outputControl timeStep;
outputInterval 1;

globalScope outletState;
globalVariables {

closed {
valueType scalar;
value 0;
isSingleValue yes;

}
airReachedOutletTime {

valueType scalar;
value -1;
isSingleValue yes;

}
shutdownTime {

valueType scalar;
value 1;
isSingleValue yes;

}
}

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 119 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Global variables

Using global variables

controlDict of FromPresentations/OSCFD_cleaningTank2D

openIfSensorReached {
type calculateGlobalVariables;
valueType set;
setName sensor;
toGlobalNamespace outletState;
globalScopes (

outletState
);
set {

type swakRegistryProxy;
axis y;
setName sensor;

}
toGlobalVariables (

closed
airReachedOutletTime

);
variables (

"state=average(alpha1);"
"thresA =0.9;"
"opening =(closed >0.5␣&&␣state >thresA)␣?␣1␣:␣0;"
"closed =(opening >0.5)␣?␣0␣:␣closed;"
"airReachedOutletTime =(opening >0.5)␣?␣ -1␣:␣average(airReachedOutletTime);"

);
aliases {

alpha1 alpha.water;
}

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 120 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Stored variables

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 121 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Stored variables

Stored variables

Regular entries in variables forget their values between time-steps
When we specify them in the storedVariables-list they don’t

They are even saved and read on restart

Specification of a stored variable needs two things
name

intialValue the value that should be used when the variable has
never been set before

When the variable is on the right of a = the stored value is used
The last value the variable is set to is stored for the next time-step
storedVariables are aware that there can be multiple iterations
per time-step

old values are from the last time. Not the last iteration

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 122 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Stored variables

Remembering the biggest value

system/controlDict in groovyBC/wobbler

biggestDFreeMem
{

type patchExpression;
patches (

free
forced

);
storedVariables (

{
name maxD;
initialValue "0";

}
);
variables ("maxD=(␣mag(D)␣>␣maxD)␣?␣mag(D)␣:␣maxD;");
accumulations (

max
);
expression "maxD";
verbose true;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 123 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Delayed expressions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 124 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Delayed expressions

Delayed variables

Delayed variables are special variables with a schizophrenic
behaviour

When written to they behave like regular variables
When read they don’t use the current value but the value set some
time ago (the delay)

They are declared in a list delayedVariables of dictionaries
name the name under which the variable is known
delay how far back in time it should go

startupValue during the first delay seconds there is nothing to
remember. This value is used instead

storeInterval this is the interval at which values should be
remembered. When remembering values between that
are interpolated

set it too high: you might run out of memory
set it too low: it might be inaccurate
in a steady simulation 1 means: we remember
everything

Values longer ago than delay are forgotten
Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 125 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Delayed expressions

What to use them for

Expression where an input triggers a delayed reaction
and we don’t want to (or can’t) model the whole system that causes
the delay

In the example below it is a pump that recycles our liquid
But it can be a sensor that has a switching time

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 126 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Mapped values

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 127 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Mapped values

Mapping in OpenFOAM

OpenFOAM offers a mechanism called "mapped" patches
Usually used for multi-region cases

Values from one patch is mapped to the other
mapped patches have to be declared in
constant/polyMesh/boundary

blockMesh knows how to do that

blockMeshDict
inlet1
{

type mappedPatch;
offset (0 0.25 0);
sampleRegion region0;
sampleMode nearestFace;
samplePatch none;
faces (

(1 5 4 0)
);

}

polyMesh/boundary

inlet1
{

type mappedPatch;
inGroups 1(mappedPatch);
nFaces 20;
startFace 11640;
sampleMode nearestFace;
sampleRegion region0;
samplePatch none;
offsetMode uniform;
offset (0 0.25 0);

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 128 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Mapped values

Swak-functions for mapping

swak4Foam supports mapped patches in 2 ways
1 in the patch parser

mapped(fieldName) gets the value of the field from the mapped
partner patch

mappedInternal(fieldName) gets the internal field
2 in external expressions

in var{patchName}=expression; the expression doesn’t have to
be uniform if patchName is the mapped partner patch of the current
patch

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 129 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Mapped values

Example: mapping channel

inlet2 is outlet1 minus 1
inlet3 is supposed to be outlet2

Figure: Transport in channels with uniform mapping. Case:
tests/mappingChannels

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 130 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Mapped values

Non-uniform distances

Previous picture illustrates a problem
Out of the box OpenFOAM only allows uniform offset between
patches

swak4Foam has a utility calcNonUniformOffsets that calculates
rotated/scaled offsets

writes them into the boundary file

calcNonUniformOffsetsDict that drives the utility

Translation, rotation and scaling are allowed
offsetSpecifications {

inlet3 {
mode specifyAll;
transposeFirst (-0.4 -0.05 0);
scaleBeforeRotation (1 1 1);
rotationFrom (0 1 0);
rotationTo (-1 0 0);
scaleAfterRotation (1 1 1);
transposeAfter (0.25 0.5 0);

}
}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 131 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Mapped values

Example: non-uniform mapping channel

Figure: Transport in channels with one non-uniform mapping. Case:
tests/mappingChannelsNonUniform

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 132 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 133 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

History of the case

This case was first demonstrated at the OSCFD-conference 2012 in
London

to demonstrate advanced capabilities of swak4Foam

Now has been slightly modified
Uses a lot of global variables to communicate states

Now that can be done simpler with state machines
See the presentation aboiut that from the Exceter Workshop 2017

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 134 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Description

Dirt particles (lagrangian!) fall into a tank
Should be filtered out

Water is let out of a tank
Until the water surface reaches the outlet (evaluations on a sampled
iso-surface!)
Then the outlet closes

The water from the outlet is pumped to an inlet
This needs 10 seconds (delayed variable!)

A sensor is modeled by a sampled set
Once the water level reaches it the outlet re-opens

Particles that reach the outlet are considered filtered
Cloud function object with expression

This is repeated until all particles are gone
Dirt stops falling into the tank after 75 seconds

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 135 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Initial conditions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 136 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Emptying

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 137 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Refilling

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 138 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Almost cleaned

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 139 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Where does the water go

Water during the simulation

Water in the tank
Flows in and out
Notice how the inflow "follows" the
outflow

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 140 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Heights - Fluid and Dirt

Height of water/air interface

The y-component of the interface
Droplets mess up the maximum

Where are the particles

The y-component of the particle
locations

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 141 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Result: Particles removed

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 142 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Using it all: cleaning Tank

Don’t overdo it

swak4Foam allows you to make interesting calculations
some of them take longer than the actual solution

The ESI fork and the foam-extend-fork have facilities to calculate
profiling info

Have to be activated
Write at each timestep to uniform/profilingInfo

The utility pyFoamListProfilingInfo.py allows you to analyze
that info

For "normal" computations the time spent in swak4Foam is less than
5%
In this thank-case it was more than 50%

Use that info to decide which computations you actually need

controlDict
Adding profiling info in the ESI branch
profiling
{

active true;
cpuInfo true;
memInfo false;
sysInfo true;

}

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 143 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Outline

1 Introduction
This presentation
Who is this?
swak4Foam

2 Parser explained
General
Native vs secondary
Uniform
My information is not there

3 Before the evaluation
OpenFOAM macro expansion
swak macro expansion

4 Function plugins
Function plugins

Implemented function plugins
5 Other parser

Zones and sets
Sets and surfaces
Particles
Other topics

6 Self-reference
External expressions
Global variables
Stored variables
Delayed expressions
Mapped values
Using it all: cleaning Tank

7 Conclusions

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 144 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

Goodbye to you

Thanks for listening
Questions?

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 145 / 146

Introduction Parser explained Before the evaluation Function plugins Other parser Self-reference Conclusions

License of this presentation

This document is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License (for the full text of the
license see
https://creativecommons.org/licenses/by-sa/3.0/legalcode).
As long as the terms of the license are met any use of this document is
fine (commercial use is explicitly encouraged).
Authors of this document are:
Bernhard F.W. Gschaider original author and responsible for the strange

English grammar. Contact him for a copy of the sources if
you want to extend/improve/use this presentation

Bernhard F.W. Gschaider (HFD) Expressive swak4Foam Duisburg, 2019-07-23 146 / 146

https://creativecommons.org/licenses/by-sa/3.0/legalcode

	Introduction
	This presentation
	Who is this?
	swak4Foam

	Parser explained
	General
	Native vs secondary
	Uniform
	My information is not there

	Before the evaluation
	OpenFOAM macro expansion
	swak macro expansion

	Function plugins
	Function plugins
	Implemented function plugins

	Other parser
	Zones and sets
	Sets and surfaces
	Particles
	Other topics

	Self-reference
	External expressions
	Global variables
	Stored variables
	Delayed expressions
	Mapped values
	Using it all: cleaning Tank

	Conclusions

